Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1409–m1410. doi: 10.1107/S1600536811037627

Chloridodiphen­yl{[1-(1,3-thia­zol-2-yl-κN)ethyl­idene]-4-phenyl­thio­semicarbazidato-κ2 N 1,S}tin(IV) methanol monosolvate

Sri Ranjini Arumugam a, Samuel S R Dasary a, Ramaiyer Venkatraman a,*, Hongtao Yu a, Frank R Fronczek b
PMCID: PMC3201461  PMID: 22065366

Abstract

The title compound, [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O, is formed during the reaction between 2-acetyl­thia­zole 4-phenyl­thio­semicarbazone (Hacthptsc) and diphenyl­tin(IV) dichloride in methanol. In the crystal structure, the Sn atom exhibits an octa­hedral geometry with the [N2S] anionic tridentate thio­semicarbazone ligand having chloride trans to the central N and the two phenyl groups trans to each other. The Sn—Cl distance is 2.5929 (6), Sn—S is 2.4896 (6) and Sn—N to the central N is 2.3220 (16) Å. The MeOH mol­ecules link the Sn complexes into one-dimensional chains via N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For the biological activity and structural characteristics of tin compounds of thio­semicarbazones, see: Teoh et al. (1999); Gielen et al. (2005); Chaudhary et al. (2009); Bamgboye & Bamgboye (1988); Barberi et al. (1993); Casas et al. (1994, 1996, 1997); De Sousa et al. (2001); Li et al. (2011); Macias et al. (1989); Huheey et al. (1993). For related structures, see: Venkatraman et al. (2004, 2007, 2009); Swesi et al. (2006a ,b ,c ); Sreekanth & Kurup (2004); Mendes et al. (2008); Li et al. (2011). For standard bond lengths, see: Allen et al. (1979); Davies (1998); Dey et al. (2003). For graph-set analysis, see: Etter (1990).graphic file with name e-67-m1409-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O

  • M r = 615.75

  • Monoclinic, Inline graphic

  • a = 8.5971 (10) Å

  • b = 20.182 (3) Å

  • c = 15.794 (2) Å

  • β = 102.050 (7)°

  • V = 2680.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 297 K

  • 0.30 × 0.20 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.709, T max = 0.818

  • 31922 measured reflections

  • 8479 independent reflections

  • 6194 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.070

  • S = 1.01

  • 8479 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037627/zk2029sup1.cif

e-67-m1409-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037627/zk2029Isup2.hkl

e-67-m1409-Isup2.hkl (414.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1 0.85 (2) 2.08 (2) 2.930 (3) 175 (2)
O1—H1S⋯Cl1i 0.76 (4) 2.52 (4) 3.248 (2) 162 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Metal complexes of heterocyclic thiosemicarbazones have been the subject of intensive research for the past three decades. Among the non-transitional metals, organotin(IV) based compounds received prominence due to their structural features and potent biological activity (Teoh et al., 1999; Gielen et al., 2005; Chaudhary et al., 2009; Bamgboye & Bamgboye, 1988; Barberi et al., 1993; Casas et al., 1994; Casas,et al., 1996; Casas et al., 1997; De Sousa et al., 2001; Li et al., 2011). Continuing with this type of study (Venkatraman et al., 2009; Venkatraman et al., 2007; Swesi et al., 2006a,b,c; Venkatraman et al., 2004), we describe here the structure of a diphenyltin chloro derivative of thiazole-2-carbaldehyde N(4)-phenyl-3-thiosemicarbazone.

The tin atom is coordinated by the tridentate ligand through the thiazole ring nitrogen, the azomethine nitrogen and thiolate sulfur atom. The octahedral complex also contains one chloro ligand trans to the central N atom of the tridentate ligand and two diphenyl groups trans to each other, as shown in Fig. 1. The tridentate ligand is reasonably planar, its 18 nonhydrogen atoms having a mean deviation of 0.082 Å from coplanarity, and a maximum of 0.176 (3) Å for methyl group C5. The bite angles of the 5-membered chelate rings are N1—Sn1—S1, 76.39 (4)° and N1—Sn1—N3, 67.57 (6)°. The two phenyl groups form a trans angle C13—Sn1—C19 154.86 (8)°, and the chloro ligand forms a trans angle N1—Sn1—Cl1 165.94 (4)°. The Sn—Cl bond is in the range of normal covalent radii (2.37–2.60 Å, Casas et al., 1997; Davies, 1998). The Sn—C (phenyl) distances are similar to those in other tin complexes reported by us earlier(Venkatraman et al., 2004; 2007; 2009; Swesi et al., 2006a,b,c). The bond length Sn—C increases with an increase in coordination number, being longer in the title compound than in four-coordinate Ph2SnCl2 [2.122 (2) Å] and is higher than expected (Dey et al., 2003). The C—S bond distance of 1.755 (2) Å is slightly shorter than a C—S single bond (1.81 Å) but longer than a C—S double bond (1.62 Å) (Macias et al., 1989; Huheey et al., 1993). The relatively shorter bond length of Sn—N1 (imine) (2.3322 Å) compared with Sn—N3 (thiazole) is attributed stronger base nature of thiazole nitrogen (Sreekanth & Kurup, 2004; Mendes et al., 2008; Li et al., 2011).

Two types of intermolecular hydrogen bonds are present, each involving both the Sn complex and the methanol solvent molecule. The amino N4—H group donates to methanol O1, and the methanol O1—H donates to the chloro ligand at 1/2 + x, 1/2 - y, 1/2 + z. The combination of the two hydrogen bonds forms chains of alternating Sn complexes and methanol molecules in the [1 0 1] direction, having graph set C22(8) (Etter, 1990), as shown in Fig. 2.

Experimental

Equimolar amounts of diphenyltin dichloride and 2-acetylthiazole 4-phenylthiosemicarbazone in dry methanol were refluxed for a period of 2 h and then allowed to cool to room temperature in presence of air. Yellow crystals of the tin complex (1) appeared in about a week.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. N—H and solvent O—H hydrogen coordinates were refined. Displacement parameters for H atoms were assigned as Uiso=1.2Ueq (1.5 for Me and OH). A torsional parameter was refined for each methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level, and the solvent is not shown.

Fig. 2.

Fig. 2.

The unit cell, showing hydrogen-bonded chains.

Crystal data

[Sn(C6H5)2(C12H11N4S2)Cl]·CH4O F(000) = 1240
Mr = 615.75 Dx = 1.526 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7958 reflections
a = 8.5971 (10) Å θ = 2.5–32.0°
b = 20.182 (3) Å µ = 1.23 mm1
c = 15.794 (2) Å T = 297 K
β = 102.050 (7)° Fragment, yellow
V = 2680.0 (6) Å3 0.30 × 0.20 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 8479 independent reflections
Radiation source: fine-focus sealed tube 6194 reflections with I > 2σ(I)
graphite Rint = 0.027
ω and φ scans θmax = 32.0°, θmin = 2.6°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −12→12
Tmin = 0.709, Tmax = 0.818 k = −28→25
31922 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.9273P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.002
8479 reflections Δρmax = 0.35 e Å3
316 parameters Δρmin = −0.58 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00176 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.400041 (15) 0.263309 (7) 0.526902 (8) 0.03515 (5)
Cl1 0.66803 (7) 0.21480 (4) 0.50486 (4) 0.06294 (17)
S1 0.35758 (7) 0.31789 (3) 0.38254 (3) 0.04796 (14)
S2 0.09795 (9) 0.29250 (4) 0.75637 (4) 0.06512 (19)
N1 0.17015 (18) 0.32507 (8) 0.52098 (10) 0.0356 (4)
N2 0.10480 (19) 0.36198 (9) 0.44956 (11) 0.0403 (4)
N3 0.2829 (2) 0.24841 (9) 0.66321 (12) 0.0419 (4)
N4 0.1258 (2) 0.39796 (10) 0.31437 (12) 0.0426 (4)
H4N 0.175 (3) 0.3937 (12) 0.2732 (15) 0.051*
C1 0.1632 (2) 0.28859 (11) 0.66081 (13) 0.0396 (4)
C2 0.2388 (3) 0.23643 (14) 0.80026 (17) 0.0615 (7)
H2 0.2540 0.2202 0.8565 0.074*
C3 0.3249 (3) 0.21897 (13) 0.74245 (15) 0.0540 (6)
H3 0.4080 0.1887 0.7554 0.065*
C4 0.0950 (2) 0.32769 (11) 0.58439 (13) 0.0402 (5)
C5 −0.0537 (3) 0.36652 (15) 0.58116 (17) 0.0617 (7)
H5A −0.0412 0.4101 0.5590 0.092*
H5B −0.0746 0.3700 0.6384 0.092*
H5C −0.1410 0.3445 0.5440 0.092*
C6 0.1826 (2) 0.36139 (10) 0.38687 (13) 0.0367 (4)
C7 −0.0056 (2) 0.44193 (11) 0.29689 (14) 0.0430 (5)
C8 −0.0943 (4) 0.46150 (16) 0.35598 (19) 0.0756 (9)
H8 −0.0706 0.4451 0.4122 0.091*
C9 −0.2185 (4) 0.50555 (18) 0.3312 (2) 0.0845 (10)
H9 −0.2779 0.5181 0.3715 0.101*
C10 −0.2564 (3) 0.53100 (16) 0.2506 (2) 0.0739 (8)
H10 −0.3395 0.5611 0.2354 0.089*
C11 −0.1695 (3) 0.51142 (17) 0.1920 (2) 0.0796 (9)
H11 −0.1941 0.5281 0.1360 0.096*
C12 −0.0455 (3) 0.46717 (15) 0.21483 (17) 0.0631 (7)
H12 0.0118 0.4543 0.1738 0.076*
C13 0.2818 (3) 0.17040 (12) 0.49558 (13) 0.0445 (5)
C14 0.1166 (3) 0.16993 (15) 0.47549 (18) 0.0676 (8)
H14 0.0612 0.2091 0.4787 0.081*
C15 0.0335 (4) 0.11204 (19) 0.4508 (2) 0.0847 (10)
H15 −0.0771 0.1127 0.4377 0.102*
C16 0.1118 (5) 0.05441 (17) 0.4454 (2) 0.0839 (10)
H16 0.0553 0.0156 0.4288 0.101*
C17 0.2748 (5) 0.05366 (15) 0.4646 (2) 0.0842 (10)
H17 0.3289 0.0142 0.4609 0.101*
C18 0.3598 (4) 0.11156 (13) 0.48954 (17) 0.0652 (7)
H18 0.4704 0.1105 0.5023 0.078*
C19 0.5337 (2) 0.33492 (11) 0.61156 (13) 0.0408 (5)
C20 0.6194 (3) 0.31871 (15) 0.69410 (15) 0.0557 (6)
H20 0.6246 0.2749 0.7127 0.067*
C21 0.6963 (3) 0.36751 (19) 0.74819 (17) 0.0714 (9)
H21 0.7518 0.3564 0.8034 0.086*
C22 0.6916 (3) 0.43192 (19) 0.7215 (2) 0.0784 (10)
H22 0.7428 0.4645 0.7588 0.094*
C23 0.6124 (3) 0.44858 (15) 0.6407 (2) 0.0732 (8)
H23 0.6114 0.4924 0.6223 0.088*
C24 0.5321 (3) 0.39994 (13) 0.58489 (17) 0.0544 (6)
H24 0.4776 0.4116 0.5297 0.065*
O1 0.2782 (3) 0.38699 (13) 0.16545 (14) 0.0795 (7)
H1S 0.252 (5) 0.357 (2) 0.137 (3) 0.119*
C25 0.4439 (4) 0.38909 (18) 0.1816 (2) 0.0845 (10)
H25A 0.4819 0.4219 0.2250 0.127*
H25B 0.4780 0.4003 0.1292 0.127*
H25C 0.4860 0.3465 0.2016 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03442 (8) 0.03828 (8) 0.03287 (8) 0.00389 (6) 0.00732 (5) −0.00039 (6)
Cl1 0.0524 (3) 0.0723 (4) 0.0704 (4) 0.0224 (3) 0.0273 (3) 0.0048 (3)
S1 0.0483 (3) 0.0618 (4) 0.0370 (3) 0.0164 (3) 0.0163 (2) 0.0096 (2)
S2 0.0809 (4) 0.0739 (5) 0.0516 (4) 0.0144 (4) 0.0391 (3) 0.0095 (3)
N1 0.0337 (8) 0.0375 (9) 0.0366 (9) 0.0025 (7) 0.0096 (7) 0.0025 (7)
N2 0.0351 (8) 0.0463 (11) 0.0394 (9) 0.0050 (7) 0.0072 (7) 0.0068 (8)
N3 0.0436 (9) 0.0452 (11) 0.0387 (10) 0.0031 (8) 0.0129 (8) 0.0029 (7)
N4 0.0435 (10) 0.0478 (11) 0.0363 (10) 0.0051 (8) 0.0078 (8) 0.0054 (8)
C1 0.0424 (10) 0.0421 (11) 0.0380 (11) −0.0025 (9) 0.0171 (9) −0.0008 (9)
C2 0.0757 (17) 0.0685 (18) 0.0436 (13) 0.0027 (14) 0.0202 (12) 0.0133 (12)
C3 0.0571 (14) 0.0582 (16) 0.0458 (13) 0.0055 (12) 0.0089 (11) 0.0108 (11)
C4 0.0361 (10) 0.0438 (12) 0.0431 (11) −0.0001 (9) 0.0137 (9) 0.0022 (9)
C5 0.0471 (13) 0.0786 (19) 0.0665 (17) 0.0212 (13) 0.0285 (12) 0.0139 (14)
C6 0.0356 (10) 0.0370 (11) 0.0359 (10) −0.0009 (8) 0.0038 (8) 0.0009 (8)
C7 0.0411 (11) 0.0379 (12) 0.0463 (12) −0.0010 (9) 0.0004 (9) 0.0034 (10)
C8 0.086 (2) 0.079 (2) 0.0632 (18) 0.0403 (17) 0.0187 (15) 0.0179 (15)
C9 0.084 (2) 0.088 (2) 0.083 (2) 0.0415 (18) 0.0211 (17) 0.0145 (19)
C10 0.0612 (16) 0.0656 (19) 0.085 (2) 0.0173 (14) −0.0066 (15) 0.0078 (16)
C11 0.0730 (19) 0.090 (2) 0.0663 (19) 0.0237 (17) −0.0076 (15) 0.0245 (17)
C12 0.0585 (14) 0.0755 (19) 0.0516 (15) 0.0139 (13) 0.0030 (12) 0.0135 (13)
C13 0.0581 (13) 0.0454 (13) 0.0306 (10) −0.0060 (10) 0.0104 (9) −0.0026 (9)
C14 0.0623 (16) 0.0642 (18) 0.080 (2) −0.0180 (13) 0.0245 (14) −0.0305 (15)
C15 0.083 (2) 0.093 (3) 0.084 (2) −0.041 (2) 0.0294 (17) −0.0394 (19)
C16 0.129 (3) 0.066 (2) 0.0580 (18) −0.045 (2) 0.0219 (19) −0.0142 (15)
C17 0.143 (3) 0.0404 (16) 0.0615 (19) −0.0015 (18) 0.0033 (19) −0.0003 (13)
C18 0.0880 (19) 0.0441 (15) 0.0547 (15) 0.0070 (14) −0.0050 (13) 0.0002 (12)
C19 0.0299 (9) 0.0526 (14) 0.0417 (11) −0.0009 (9) 0.0115 (8) −0.0092 (10)
C20 0.0470 (12) 0.0766 (18) 0.0439 (13) −0.0096 (12) 0.0106 (10) −0.0023 (12)
C21 0.0528 (15) 0.119 (3) 0.0429 (14) −0.0235 (16) 0.0124 (11) −0.0221 (16)
C22 0.0642 (17) 0.098 (3) 0.077 (2) −0.0290 (17) 0.0238 (16) −0.0406 (19)
C23 0.0661 (17) 0.0568 (18) 0.098 (2) −0.0130 (14) 0.0212 (16) −0.0207 (16)
C24 0.0479 (12) 0.0528 (15) 0.0614 (15) 0.0000 (11) 0.0089 (11) −0.0047 (12)
O1 0.0758 (14) 0.1003 (19) 0.0638 (14) 0.0098 (13) 0.0178 (11) −0.0101 (11)
C25 0.084 (2) 0.095 (3) 0.080 (2) −0.0011 (19) 0.0276 (17) 0.0158 (18)

Geometric parameters (Å, °)

Sn1—C19 2.134 (2) C10—H10 0.9300
Sn1—C13 2.141 (2) C11—C12 1.379 (4)
Sn1—N1 2.3220 (16) C11—H11 0.9300
Sn1—S1 2.4896 (6) C12—H12 0.9300
Sn1—N3 2.5779 (18) C13—C18 1.377 (3)
Sn1—Cl1 2.5929 (6) C13—C14 1.389 (3)
S1—C6 1.755 (2) C14—C15 1.383 (4)
S2—C2 1.696 (3) C14—H14 0.9300
S2—C1 1.718 (2) C15—C16 1.355 (5)
N1—C4 1.301 (2) C15—H15 0.9300
N1—N2 1.371 (2) C16—C17 1.371 (5)
N2—C6 1.306 (2) C16—H16 0.9300
N3—C1 1.304 (3) C17—C18 1.391 (4)
N3—C3 1.364 (3) C17—H17 0.9300
N4—C6 1.364 (3) C18—H18 0.9300
N4—C7 1.418 (3) C19—C24 1.377 (3)
N4—H4N 0.85 (2) C19—C20 1.396 (3)
C1—C4 1.459 (3) C20—C21 1.379 (4)
C2—C3 1.337 (3) C20—H20 0.9300
C2—H2 0.9300 C21—C22 1.364 (5)
C3—H3 0.9300 C21—H21 0.9300
C4—C5 1.491 (3) C22—C23 1.358 (4)
C5—H5A 0.9600 C22—H22 0.9300
C5—H5B 0.9600 C23—C24 1.401 (4)
C5—H5C 0.9600 C23—H23 0.9300
C7—C12 1.368 (3) C24—H24 0.9300
C7—C8 1.380 (3) O1—C25 1.395 (4)
C8—C9 1.382 (4) O1—H1S 0.76 (4)
C8—H8 0.9300 C25—H25A 0.9600
C9—C10 1.348 (4) C25—H25B 0.9600
C9—H9 0.9300 C25—H25C 0.9600
C10—C11 1.363 (4)
C19—Sn1—C13 154.86 (8) C10—C9—H9 118.9
C19—Sn1—N1 90.24 (7) C8—C9—H9 118.9
C13—Sn1—N1 95.85 (8) C9—C10—C11 118.1 (3)
C19—Sn1—S1 103.35 (6) C9—C10—H10 120.9
C13—Sn1—S1 101.78 (6) C11—C10—H10 120.9
N1—Sn1—S1 76.39 (4) C10—C11—C12 120.9 (3)
C19—Sn1—N3 78.98 (7) C10—C11—H11 119.5
C13—Sn1—N3 80.88 (7) C12—C11—H11 119.5
N1—Sn1—N3 67.57 (6) C7—C12—C11 121.0 (3)
S1—Sn1—N3 143.93 (4) C7—C12—H12 119.5
C19—Sn1—Cl1 87.85 (5) C11—C12—H12 119.5
C13—Sn1—Cl1 91.74 (6) C18—C13—C14 117.9 (2)
N1—Sn1—Cl1 165.94 (4) C18—C13—Sn1 123.85 (18)
S1—Sn1—Cl1 90.49 (2) C14—C13—Sn1 118.16 (19)
N3—Sn1—Cl1 125.54 (4) C15—C14—C13 120.9 (3)
C6—S1—Sn1 98.55 (7) C15—C14—H14 119.5
C2—S2—C1 89.55 (12) C13—C14—H14 119.5
C4—N1—N2 115.29 (16) C16—C15—C14 120.6 (3)
C4—N1—Sn1 123.10 (14) C16—C15—H15 119.7
N2—N1—Sn1 121.61 (11) C14—C15—H15 119.7
C6—N2—N1 115.61 (16) C15—C16—C17 119.6 (3)
C1—N3—C3 110.72 (19) C15—C16—H16 120.2
C1—N3—Sn1 110.27 (13) C17—C16—H16 120.2
C3—N3—Sn1 137.91 (15) C16—C17—C18 120.4 (3)
C6—N4—C7 129.29 (18) C16—C17—H17 119.8
C6—N4—H4N 115.9 (16) C18—C17—H17 119.8
C7—N4—H4N 114.8 (16) C13—C18—C17 120.6 (3)
N3—C1—C4 122.62 (17) C13—C18—H18 119.7
N3—C1—S2 113.78 (16) C17—C18—H18 119.7
C4—C1—S2 123.59 (16) C24—C19—C20 118.6 (2)
C3—C2—S2 110.3 (2) C24—C19—Sn1 118.94 (17)
C3—C2—H2 124.9 C20—C19—Sn1 122.45 (19)
S2—C2—H2 124.9 C21—C20—C19 120.2 (3)
C2—C3—N3 115.7 (2) C21—C20—H20 119.9
C2—C3—H3 122.2 C19—C20—H20 119.9
N3—C3—H3 122.2 C22—C21—C20 120.7 (3)
N1—C4—C1 115.86 (18) C22—C21—H21 119.7
N1—C4—C5 123.70 (19) C20—C21—H21 119.7
C1—C4—C5 120.43 (18) C23—C22—C21 120.2 (3)
C4—C5—H5A 109.5 C23—C22—H22 119.9
C4—C5—H5B 109.5 C21—C22—H22 119.9
H5A—C5—H5B 109.5 C22—C23—C24 120.2 (3)
C4—C5—H5C 109.5 C22—C23—H23 119.9
H5A—C5—H5C 109.5 C24—C23—H23 119.9
H5B—C5—H5C 109.5 C19—C24—C23 120.2 (3)
N2—C6—N4 118.77 (18) C19—C24—H24 119.9
N2—C6—S1 127.81 (16) C23—C24—H24 119.9
N4—C6—S1 113.42 (15) C25—O1—H1S 107 (3)
C12—C7—C8 118.0 (2) O1—C25—H25A 109.5
C12—C7—N4 116.7 (2) O1—C25—H25B 109.5
C8—C7—N4 125.3 (2) H25A—C25—H25B 109.5
C7—C8—C9 119.7 (3) O1—C25—H25C 109.5
C7—C8—H8 120.1 H25A—C25—H25C 109.5
C9—C8—H8 120.1 H25B—C25—H25C 109.5
C10—C9—C8 122.2 (3)
C19—Sn1—S1—C6 −87.39 (9) Sn1—S1—C6—N2 −0.3 (2)
C13—Sn1—S1—C6 92.81 (9) Sn1—S1—C6—N4 179.95 (14)
N1—Sn1—S1—C6 −0.44 (8) C6—N4—C7—C12 −173.6 (2)
N3—Sn1—S1—C6 2.17 (11) C6—N4—C7—C8 7.1 (4)
Cl1—Sn1—S1—C6 −175.30 (7) C12—C7—C8—C9 −0.3 (5)
C19—Sn1—N1—C4 −74.56 (18) N4—C7—C8—C9 179.0 (3)
C13—Sn1—N1—C4 81.01 (17) C7—C8—C9—C10 −0.5 (6)
S1—Sn1—N1—C4 −178.25 (17) C8—C9—C10—C11 0.9 (6)
N3—Sn1—N1—C4 3.41 (16) C9—C10—C11—C12 −0.4 (5)
Cl1—Sn1—N1—C4 −156.65 (15) C8—C7—C12—C11 0.7 (4)
C19—Sn1—N1—N2 104.97 (15) N4—C7—C12—C11 −178.6 (3)
C13—Sn1—N1—N2 −99.46 (15) C10—C11—C12—C7 −0.4 (5)
S1—Sn1—N1—N2 1.28 (14) C19—Sn1—C13—C18 −76.4 (3)
N3—Sn1—N1—N2 −177.06 (16) N1—Sn1—C13—C18 −179.58 (19)
Cl1—Sn1—N1—N2 22.9 (3) S1—Sn1—C13—C18 103.14 (19)
C4—N1—N2—C6 177.74 (19) N3—Sn1—C13—C18 −113.5 (2)
Sn1—N1—N2—C6 −1.8 (2) Cl1—Sn1—C13—C18 12.27 (19)
C19—Sn1—N3—C1 88.85 (16) C19—Sn1—C13—C14 107.3 (2)
C13—Sn1—N3—C1 −106.27 (16) N1—Sn1—C13—C14 4.12 (19)
N1—Sn1—N3—C1 −6.02 (14) S1—Sn1—C13—C14 −73.16 (18)
S1—Sn1—N3—C1 −8.76 (19) N3—Sn1—C13—C14 70.24 (18)
Cl1—Sn1—N3—C1 168.14 (13) Cl1—Sn1—C13—C14 −164.03 (18)
C19—Sn1—N3—C3 −77.5 (2) C18—C13—C14—C15 0.4 (4)
C13—Sn1—N3—C3 87.4 (2) Sn1—C13—C14—C15 176.9 (2)
N1—Sn1—N3—C3 −172.3 (2) C13—C14—C15—C16 −0.2 (5)
S1—Sn1—N3—C3 −175.08 (19) C14—C15—C16—C17 −0.1 (5)
Cl1—Sn1—N3—C3 1.8 (2) C15—C16—C17—C18 0.1 (5)
C3—N3—C1—C4 178.9 (2) C14—C13—C18—C17 −0.4 (4)
Sn1—N3—C1—C4 8.7 (3) Sn1—C13—C18—C17 −176.7 (2)
C3—N3—C1—S2 0.5 (2) C16—C17—C18—C13 0.2 (5)
Sn1—N3—C1—S2 −169.73 (10) C13—Sn1—C19—C24 −161.17 (19)
C2—S2—C1—N3 −0.6 (2) N1—Sn1—C19—C24 −56.77 (17)
C2—S2—C1—C4 −179.0 (2) S1—Sn1—C19—C24 19.30 (17)
C1—S2—C2—C3 0.5 (2) N3—Sn1—C19—C24 −123.84 (17)
S2—C2—C3—N3 −0.3 (3) Cl1—Sn1—C19—C24 109.30 (16)
C1—N3—C3—C2 −0.1 (3) C13—Sn1—C19—C20 17.0 (3)
Sn1—N3—C3—C2 166.14 (19) N1—Sn1—C19—C20 121.42 (17)
N2—N1—C4—C1 179.97 (17) S1—Sn1—C19—C20 −162.51 (16)
Sn1—N1—C4—C1 −0.5 (3) N3—Sn1—C19—C20 54.35 (16)
N2—N1—C4—C5 1.2 (3) Cl1—Sn1—C19—C20 −72.51 (16)
Sn1—N1—C4—C5 −179.29 (18) C24—C19—C20—C21 2.0 (3)
N3—C1—C4—N1 −6.4 (3) Sn1—C19—C20—C21 −176.23 (17)
S2—C1—C4—N1 171.93 (17) C19—C20—C21—C22 −0.9 (4)
N3—C1—C4—C5 172.5 (2) C20—C21—C22—C23 −0.8 (4)
S2—C1—C4—C5 −9.2 (3) C21—C22—C23—C24 1.4 (4)
N1—N2—C6—N4 −178.91 (18) C20—C19—C24—C23 −1.4 (3)
N1—N2—C6—S1 1.4 (3) Sn1—C19—C24—C23 176.88 (18)
C7—N4—C6—N2 4.4 (3) C22—C23—C24—C19 −0.3 (4)
C7—N4—C6—S1 −175.87 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4N···O1 0.85 (2) 2.08 (2) 2.930 (3) 175 (2)
O1—H1S···Cl1i 0.76 (4) 2.52 (4) 3.248 (2) 162 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2029).

References

  1. Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bamgboye, T. T. & Bamgboye, O. A. (1988). Inorg. Chim. Acta, 144, 249–252.
  4. Barberi, R. S., Beraldo, H. O., Filgueiras, C. A. L., Abras, A., Nixon, J. F. & Hitchcock, P. B. (1993). Inorg. Chim. Acta, 206, 169–172.
  5. Casas, J. S., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172.
  6. Casas, J. S., Castineiras, A., Martinez, E. G., Gonzalez, A. S., Sanchez, A. & Sordo, J. (1997). Polyhedron, 16, 795–800.
  7. Casas, J. S., Castineiras, A., Sanchez, A., Sordo, J., Vazquez-Lopez, A., Rodriguez-Argiuelles, M. C. & Russo. U. (1994). Inorg. Chim. Acta, 221, 61–68.
  8. Chaudhary, P., Swami, M., Sharma, D. K. & Singh, R. V. (2009). Appl. Organomet. Chem. 23, 140–149.
  9. Davies, A. G. (1998). Radical Chemistry of Tin, 2nd ed., edited by P. J. Smith, pp. 265–289. London: Blackie.
  10. De Sousa, G. F., Francisco, R. H. P., Gambardella, M. T. P., Santos, R. H. A. & Abras, A. (2001). J. Braz. Chem. Soc. 12, 722–728.
  11. Dey, D. K., Samanta, B., Lycka, A. & Dahlenburg, L. (2003). Z. Naturforsch. Teil B, 58, 336–344.
  12. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  13. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  14. Gielen, M., Biesemans, R. & Willen, R. (2005). Appl. Organomet. Chem. 19, 440–450.
  15. Huheey, J. E., Keiter, E. A. & Keitar, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed. New York: Harper Collins.
  16. Li, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852–858.
  17. Macias, A., Rodriguez-Arguelles, M. C., Suarez, M. I., Casas, J. S. & Sordo, J. (1989). J. Chem. Soc. Dalton Trans. pp. 1787–1791.
  18. Mendes, I. C., Moreira, J. P., Ardission, J. D., dos Santos, R. G., da Silva, P. R. O., Garcia, I., Castineiras, A. & Beraldo, H. (2008). J. Med. Chem. 43, 1454–1461. [DOI] [PubMed]
  19. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  20. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sreekanth, A. & Kurup, M. R. P. (2004). Polyhedron, 23, 969–978.
  23. Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006a). Acta Cryst. E62, m3016–m3017.
  24. Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006b). Acta Cryst. E62, m3018–m3019.
  25. Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006c). Acta Cryst. E62, m3020–m3021.
  26. Teoh, S. G., Ang, S. H. & Ong, C. W. (1999). J. Organomet. Chem. 580, 17–21.
  27. Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037. [DOI] [PubMed]
  28. Venkatraman, R., Sitole, L., Adams, T. D., Cameron, J. A. & Fronczek, F. R. (2007). Acta Cryst. E63, m2212–m2213.
  29. Venkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653–m1654. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037627/zk2029sup1.cif

e-67-m1409-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037627/zk2029Isup2.hkl

e-67-m1409-Isup2.hkl (414.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES