Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2567. doi: 10.1107/S1600536811035501

2,4-Diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium 2-propanamido­benzoate

Sampath Natarajan a,*, Rita Mathews a
PMCID: PMC3201463  PMID: 22065507

Abstract

In the title salt, C12H14ClN4 +·C10H10NO3 , zwitterionic N—H⋯O inter­actions form an R 2 2(8) ring. The crystal structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds involving two different eight-membered rings. An N—H⋯O inter­action occurs between the pyrimidine ring (donor) and carboxyl­ate group (acceptor) while the other ring is formed by N—H⋯N inter­actions, which form a dimer between two symmetry-related salts. An intra­molecular N—H⋯O hydrogen bond forms a six-membered ring in the benzoate. Inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For amino­pyrimidine carboxyl­ates, see: Chinnakali et al. (1999); Lynch & Jones (2004); Stanley et al. (2005). For amino­pyrimidine and benzoic acid adducts, see: Balasub­ram­ani et al. (2005, 2006); Thanigaimani et al. (2006, 2007). For hydrogen bonding in mol­ecular recognition and crystal engin­eering, see: Desiraju (1989). For puckering and asymmetry parameters, see: Cremer & Pople, (1975); Nardelli (1995).graphic file with name e-67-o2567-scheme1.jpg

Experimental

Crystal data

  • C12H14ClN4 +·C10H10NO3

  • M r = 441.91

  • Monoclinic, Inline graphic

  • a = 22.144 (3) Å

  • b = 9.4915 (14) Å

  • c = 21.844 (3) Å

  • β = 99.071 (3)°

  • V = 4533.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.50 × 0.45 × 0.42 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 17933 measured reflections

  • 5077 independent reflections

  • 2719 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.088

  • wR(F 2) = 0.228

  • S = 1.06

  • 5077 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035501/ff2025sup1.cif

e-67-o2567-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035501/ff2025Isup2.hkl

e-67-o2567-Isup2.hkl (243.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035501/ff2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2 0.86 1.89 2.605 (4) 140
N2—H2A⋯O3i 0.86 2.15 2.977 (4) 163
N4—H4A⋯N1ii 0.86 2.16 2.988 (4) 163
N3—H3⋯O1iii 0.86 1.80 2.660 (4) 178
C14—H14C⋯O1iii 0.96 2.53 3.323 (6) 140
N2—H2B⋯O2iii 0.86 1.91 2.746 (4) 164
N4—H4B⋯O3iv 0.86 2.35 3.017 (3) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Aminopyrimidine-Carboxylate interactions are important since they are involved in protein-nucleic acids recognition and protein-drug binding. Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). In general, aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which itself is a unique property. The adducts of carboxylic acid with 2-aminopyrimidine system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/carboxylates systems. The crystal structures of many aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystal structures (Chinnakali et al.,1999) have been reported. Many structures of aminopyrimidine and benzoic acid adducts are also have been reported. Few of them are 2-amino-4,6-dimethoxy pyrimidine: 4-aminobenzoic acid (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxypyrimidine: phthalic acid (Thanigaimani et al., 2007), 2-amino-4,6-dimethylpyrimidine: cinnamic acid (Balasubramani et al., 2005) and 2-amino-4,6-dimethylpyrimidine: 4-hydroxybenzoic acid (Balasubramani et al., 2006). All these reported structures have common features of heterosynthone formation. In the present study we report a salt (1:1) namely, 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-propanamidobenzoate which forms a zwitterionic interaction between the molecules of aminopyrimidine and benzoate exhibit a motif R22(8) ring.

The asymmetric unit of crystal contains a single molecule of each component of salt (Fig. 1). Interactions are found between the salt of aminopyrimidin-1-ium and benzoate via hydrogen bonds N2—H2B···O2 and N3—H3···O1 (Fig. 2). Here the pyrimidine acts as a donor which donates two H atoms to carboxylate O atoms (acceptor). In addition, a dimeric interaction through centre of inverted symmetry related salts via a hydrogen bond N4—H4A···N1 (Fig. 2) forms an eight membered ring. The dihedral angle between the rings, 4-chlorophenyl and 2,4-diaminopyrimidine is 63.8 (1)°. This value is higher than that in a biphenyl ring system. This may be due to the substitution of ethyl and amine groups at C4 and C6, respectively. An extended moiety of propanamido group is slightly deviating from the plane of benzoate moiety and the dihedral angle between these two is 10.8 (1)° (Cremer & Pople, 1975; Nardelli, 1995).

The packing diagram of the molecule viewed down b-axis is shown in Fig. 3. Two symmetry related molecules of salt form the dimer and organize as a sheet. This sheet like dimers are connected through the hydrogen bonds N4—H4B···O3 & N2—H2A···O3 interactions. In addition, a six membered ring is formed by an intra-molecular interaction (N5—H5···O2)in benzoate molecule which also controls the molecules in crystal packing. Molecular packing is stabilized by many N—H···O and N—H···N types intra and intermolecular interactions (Table 1, Fig. 2).

Experimental

A hot methanolic solution (20 ml) of 2,4-diamino-5-(4-chlorophenyl)-6- ethylpyrimidine and 2-(propanoylamino)benzoic acid in the ratio of 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room temperature and after a few days, colourless crystals were obtained

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and for aromatic NH2 and N—H = 0.86 Å. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level.

Fig. 2.

Fig. 2.

Dimer interaction between the symmetry related salts of title compound. Dashed lines indicate the intra and intermolecular hydrogen bonds.

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed down the b-axis. Dashed lines indicate the intra and intermolecular interactions between the molecules.

Crystal data

C12H14ClN4+·C10H10NO3 F(000) = 1856
Mr = 441.91 Dx = 1.295 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 22.144 (3) Å Cell parameters from 17933 reflections
b = 9.4915 (14) Å θ = 1.9–28.0°
c = 21.844 (3) Å µ = 0.20 mm1
β = 99.071 (3)° T = 293 K
V = 4533.7 (12) Å3 Block, colorless
Z = 8 0.50 × 0.45 × 0.42 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2719 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.039
graphite θmax = 28.0°, θmin = 1.9°
ω scans h = −28→29
17933 measured reflections k = −10→12
5077 independent reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1005P)2 + 1.940P] where P = (Fo2 + 2Fc2)/3
5077 reflections (Δ/σ)max = 0.002
281 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.62790 (7) −0.12826 (18) 0.25493 (7) 0.1465 (7)
O1 0.25218 (12) 0.3854 (3) 0.05381 (12) 0.0926 (9)
O2 0.25430 (14) 0.2607 (4) 0.13892 (13) 0.1067 (11)
O3 0.37717 (11) 0.3960 (3) 0.33389 (11) 0.0809 (7)
N1 0.43891 (11) 0.3633 (3) −0.01402 (11) 0.0567 (7)
N2 0.34901 (13) 0.3749 (3) −0.08192 (12) 0.0708 (8)
H2A 0.3626 0.4469 −0.0994 0.085*
H2B 0.3130 0.3430 −0.0953 0.085*
N3 0.36043 (12) 0.2008 (3) −0.00894 (12) 0.0640 (7)
H3 0.3237 0.1738 −0.0228 0.077*
N4 0.52835 (12) 0.3481 (3) 0.05255 (12) 0.0654 (7)
H4A 0.5399 0.4220 0.0348 0.078*
H4B 0.5525 0.3093 0.0825 0.078*
N5 0.32811 (13) 0.3417 (3) 0.23743 (12) 0.0763 (9)
H5 0.2990 0.2900 0.2188 0.092*
C2 0.38321 (14) 0.3137 (3) −0.03469 (14) 0.0567 (8)
C4 0.39373 (15) 0.1283 (4) 0.03825 (14) 0.0620 (9)
C5 0.45211 (14) 0.1711 (3) 0.06071 (13) 0.0562 (8)
C6 0.47322 (14) 0.2937 (3) 0.03366 (13) 0.0544 (8)
C7 0.49398 (15) 0.0933 (4) 0.10941 (14) 0.0590 (8)
C8 0.51370 (18) −0.0416 (4) 0.09988 (16) 0.0780 (10)
H8 0.4995 −0.0873 0.0627 0.094*
C9 0.5542 (2) −0.1100 (4) 0.1447 (2) 0.0925 (13)
H9 0.5666 −0.2014 0.1378 0.111*
C10 0.57609 (18) −0.0431 (5) 0.19934 (18) 0.0828 (11)
C11 0.55717 (17) 0.0894 (5) 0.21009 (16) 0.0770 (11)
H11 0.5722 0.1341 0.2473 0.092*
C12 0.51563 (16) 0.1586 (4) 0.16609 (15) 0.0676 (9)
H12 0.5021 0.2484 0.1742 0.081*
C13 0.36238 (19) 0.0048 (4) 0.06172 (18) 0.0857 (12)
H13A 0.3875 −0.0302 0.0990 0.103*
H13B 0.3238 0.0360 0.0729 0.103*
C14 0.3503 (3) −0.1118 (5) 0.0168 (3) 0.1222 (18)
H14A 0.3300 −0.1870 0.0348 0.183*
H14B 0.3883 −0.1455 0.0064 0.183*
H14C 0.3247 −0.0788 −0.0200 0.183*
C15 0.33329 (14) 0.4293 (4) 0.13458 (15) 0.0596 (8)
C16 0.36330 (15) 0.5078 (4) 0.09550 (16) 0.0663 (9)
H16 0.3467 0.5132 0.0537 0.080*
C17 0.41712 (16) 0.5788 (4) 0.11626 (18) 0.0754 (10)
H17 0.4364 0.6313 0.0891 0.090*
C18 0.44141 (17) 0.5700 (4) 0.17795 (19) 0.0833 (11)
H18 0.4777 0.6169 0.1927 0.100*
C19 0.41304 (16) 0.4932 (4) 0.21807 (18) 0.0774 (10)
H19 0.4303 0.4888 0.2597 0.093*
C20 0.35892 (15) 0.4216 (4) 0.19784 (15) 0.0620 (8)
C21 0.27569 (16) 0.3551 (4) 0.10749 (16) 0.0687 (9)
C22 0.33649 (17) 0.3327 (4) 0.29967 (16) 0.0758 (10)
C23 0.2921 (2) 0.2325 (7) 0.3252 (2) 0.1161 (17)
H23A 0.2583 0.2126 0.2924 0.139*
H23B 0.3131 0.1442 0.3363 0.139*
C24 0.2684 (5) 0.2828 (11) 0.3771 (4) 0.247 (6)
H24A 0.2412 0.2139 0.3898 0.371*
H24B 0.2465 0.3689 0.3665 0.371*
H24C 0.3014 0.2999 0.4104 0.371*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1356 (12) 0.1739 (14) 0.1179 (10) 0.0501 (10) −0.0176 (8) 0.0603 (10)
O1 0.0793 (17) 0.122 (2) 0.0646 (15) −0.0330 (16) −0.0247 (13) 0.0108 (15)
O2 0.097 (2) 0.132 (3) 0.0758 (17) −0.0575 (19) −0.0334 (15) 0.0152 (17)
O3 0.0685 (15) 0.104 (2) 0.0626 (14) 0.0039 (14) −0.0119 (12) −0.0153 (14)
N1 0.0503 (14) 0.0625 (16) 0.0522 (14) −0.0062 (13) −0.0077 (11) 0.0027 (12)
N2 0.0611 (16) 0.0756 (19) 0.0667 (17) −0.0151 (15) −0.0177 (14) 0.0160 (15)
N3 0.0519 (15) 0.0730 (19) 0.0613 (16) −0.0176 (14) −0.0093 (12) 0.0036 (14)
N4 0.0542 (15) 0.0687 (18) 0.0675 (17) −0.0089 (14) −0.0082 (13) 0.0185 (14)
N5 0.0629 (17) 0.100 (2) 0.0574 (17) −0.0223 (17) −0.0183 (14) −0.0015 (16)
C2 0.0562 (19) 0.0574 (19) 0.0522 (17) −0.0120 (16) −0.0045 (15) −0.0012 (15)
C4 0.062 (2) 0.067 (2) 0.0534 (18) −0.0103 (17) −0.0020 (15) 0.0032 (16)
C5 0.0576 (18) 0.061 (2) 0.0484 (16) −0.0032 (16) 0.0024 (14) 0.0017 (14)
C6 0.0513 (17) 0.060 (2) 0.0494 (17) −0.0062 (16) 0.0014 (14) −0.0001 (14)
C7 0.0579 (18) 0.065 (2) 0.0528 (18) −0.0041 (16) 0.0051 (15) 0.0059 (15)
C8 0.098 (3) 0.072 (3) 0.061 (2) 0.006 (2) 0.005 (2) 0.0003 (18)
C9 0.116 (4) 0.078 (3) 0.085 (3) 0.033 (3) 0.020 (3) 0.019 (2)
C10 0.075 (2) 0.104 (3) 0.068 (2) 0.014 (2) 0.005 (2) 0.026 (2)
C11 0.072 (2) 0.099 (3) 0.055 (2) −0.005 (2) −0.0049 (18) 0.009 (2)
C12 0.069 (2) 0.073 (2) 0.058 (2) 0.0008 (18) 0.0028 (17) 0.0016 (17)
C13 0.081 (3) 0.089 (3) 0.080 (2) −0.021 (2) −0.009 (2) 0.016 (2)
C14 0.132 (4) 0.085 (3) 0.139 (4) −0.026 (3) −0.013 (4) 0.007 (3)
C15 0.0490 (17) 0.063 (2) 0.0607 (19) 0.0016 (16) −0.0089 (15) −0.0106 (16)
C16 0.061 (2) 0.076 (2) 0.0568 (18) −0.0003 (18) −0.0051 (16) −0.0004 (17)
C17 0.055 (2) 0.084 (3) 0.084 (3) −0.0058 (19) 0.0027 (18) 0.006 (2)
C18 0.061 (2) 0.090 (3) 0.091 (3) −0.017 (2) −0.013 (2) 0.002 (2)
C19 0.065 (2) 0.086 (3) 0.071 (2) −0.012 (2) −0.0202 (18) 0.000 (2)
C20 0.0519 (18) 0.066 (2) 0.0625 (19) −0.0002 (17) −0.0091 (15) −0.0040 (17)
C21 0.062 (2) 0.078 (2) 0.060 (2) −0.0134 (19) −0.0081 (17) −0.0059 (19)
C22 0.065 (2) 0.095 (3) 0.061 (2) 0.008 (2) −0.0099 (18) −0.005 (2)
C23 0.100 (3) 0.174 (5) 0.073 (3) −0.012 (3) 0.009 (2) 0.015 (3)
C24 0.312 (13) 0.252 (10) 0.206 (9) −0.147 (10) 0.126 (9) −0.044 (8)

Geometric parameters (Å, °)

Cl1—C10 1.734 (4) C10—C11 1.357 (6)
O1—C21 1.240 (4) C11—C12 1.387 (5)
O2—C21 1.265 (4) C11—H11 0.9300
O3—C22 1.232 (4) C12—H12 0.9300
N1—C2 1.331 (4) C13—C14 1.475 (6)
N1—C6 1.360 (4) C13—H13A 0.9700
N2—C2 1.315 (4) C13—H13B 0.9700
N2—H2A 0.8600 C14—H14A 0.9600
N2—H2B 0.8600 C14—H14B 0.9600
N3—C2 1.345 (4) C14—H14C 0.9600
N3—C4 1.356 (4) C15—C16 1.380 (5)
N3—H3 0.8600 C15—C20 1.410 (4)
N4—C6 1.330 (4) C15—C21 1.495 (5)
N4—H4A 0.8600 C16—C17 1.382 (5)
N4—H4B 0.8600 C16—H16 0.9300
N5—C22 1.346 (4) C17—C18 1.372 (5)
N5—C20 1.405 (4) C17—H17 0.9300
N5—H5 0.8600 C18—C19 1.366 (5)
C4—C5 1.370 (4) C18—H18 0.9300
C4—C13 1.494 (5) C19—C20 1.388 (5)
C5—C6 1.417 (4) C19—H19 0.9300
C5—C7 1.492 (4) C22—C23 1.534 (6)
C7—C8 1.379 (5) C23—C24 1.406 (9)
C7—C12 1.400 (4) C23—H23A 0.9700
C8—C9 1.381 (5) C23—H23B 0.9700
C8—H8 0.9300 C24—H24A 0.9600
C9—C10 1.372 (6) C24—H24B 0.9600
C9—H9 0.9300 C24—H24C 0.9600
C2—N1—C6 117.6 (3) C14—C13—H13B 108.8
C2—N2—H2A 120.0 C4—C13—H13B 108.8
C2—N2—H2B 120.0 H13A—C13—H13B 107.7
H2A—N2—H2B 120.0 C13—C14—H14A 109.5
C2—N3—C4 121.8 (3) C13—C14—H14B 109.5
C2—N3—H3 119.1 H14A—C14—H14B 109.5
C4—N3—H3 119.1 C13—C14—H14C 109.5
C6—N4—H4A 120.0 H14A—C14—H14C 109.5
C6—N4—H4B 120.0 H14B—C14—H14C 109.5
H4A—N4—H4B 120.0 C16—C15—C20 118.4 (3)
C22—N5—C20 130.8 (3) C16—C15—C21 118.3 (3)
C22—N5—H5 114.6 C20—C15—C21 123.4 (3)
C20—N5—H5 114.6 C15—C16—C17 122.3 (3)
N2—C2—N1 119.9 (3) C15—C16—H16 118.8
N2—C2—N3 118.2 (3) C17—C16—H16 118.8
N1—C2—N3 121.9 (3) C18—C17—C16 118.5 (4)
N3—C4—C5 119.4 (3) C18—C17—H17 120.8
N3—C4—C13 115.6 (3) C16—C17—H17 120.8
C5—C4—C13 125.0 (3) C19—C18—C17 120.9 (3)
C4—C5—C6 116.6 (3) C19—C18—H18 119.5
C4—C5—C7 123.6 (3) C17—C18—H18 119.5
C6—C5—C7 119.7 (3) C18—C19—C20 121.2 (3)
N4—C6—N1 115.1 (3) C18—C19—H19 119.4
N4—C6—C5 122.4 (3) C20—C19—H19 119.4
N1—C6—C5 122.5 (3) C19—C20—N5 123.1 (3)
C8—C7—C12 118.2 (3) C19—C20—C15 118.7 (3)
C8—C7—C5 121.9 (3) N5—C20—C15 118.1 (3)
C12—C7—C5 119.9 (3) O1—C21—O2 122.7 (3)
C7—C8—C9 121.0 (4) O1—C21—C15 118.0 (3)
C7—C8—H8 119.5 O2—C21—C15 119.2 (3)
C9—C8—H8 119.5 O3—C22—N5 123.6 (4)
C10—C9—C8 120.0 (4) O3—C22—C23 122.0 (3)
C10—C9—H9 120.0 N5—C22—C23 114.4 (3)
C8—C9—H9 120.0 C24—C23—C22 115.1 (6)
C11—C10—C9 120.2 (4) C24—C23—H23A 108.5
C11—C10—Cl1 120.0 (3) C22—C23—H23A 108.5
C9—C10—Cl1 119.9 (4) C24—C23—H23B 108.5
C10—C11—C12 120.5 (4) C22—C23—H23B 108.5
C10—C11—H11 119.7 H23A—C23—H23B 107.5
C12—C11—H11 119.7 C23—C24—H24A 109.5
C11—C12—C7 120.0 (4) C23—C24—H24B 109.5
C11—C12—H12 120.0 H24A—C24—H24B 109.5
C7—C12—H12 120.0 C23—C24—H24C 109.5
C14—C13—C4 114.0 (4) H24A—C24—H24C 109.5
C14—C13—H13A 108.8 H24B—C24—H24C 109.5
C4—C13—H13A 108.8
C6—N1—C2—N2 −178.0 (3) C10—C11—C12—C7 −1.6 (5)
C6—N1—C2—N3 1.5 (5) C8—C7—C12—C11 1.9 (5)
C4—N3—C2—N2 177.3 (3) C5—C7—C12—C11 −176.4 (3)
C4—N3—C2—N1 −2.2 (5) N3—C4—C13—C14 67.1 (5)
C2—N3—C4—C5 0.3 (5) C5—C4—C13—C14 −112.8 (4)
C2—N3—C4—C13 −179.6 (3) C20—C15—C16—C17 −0.1 (5)
N3—C4—C5—C6 2.0 (5) C21—C15—C16—C17 −179.3 (3)
C13—C4—C5—C6 −178.1 (3) C15—C16—C17—C18 0.2 (6)
N3—C4—C5—C7 −175.7 (3) C16—C17—C18—C19 −0.2 (6)
C13—C4—C5—C7 4.2 (5) C17—C18—C19—C20 0.1 (6)
C2—N1—C6—N4 −179.8 (3) C18—C19—C20—N5 −179.8 (3)
C2—N1—C6—C5 1.0 (4) C18—C19—C20—C15 0.0 (6)
C4—C5—C6—N4 178.1 (3) C22—N5—C20—C19 10.9 (6)
C7—C5—C6—N4 −4.1 (5) C22—N5—C20—C15 −168.9 (4)
C4—C5—C6—N1 −2.7 (5) C16—C15—C20—C19 0.0 (5)
C7—C5—C6—N1 175.0 (3) C21—C15—C20—C19 179.2 (3)
C4—C5—C7—C8 63.2 (5) C16—C15—C20—N5 179.9 (3)
C6—C5—C7—C8 −114.4 (4) C21—C15—C20—N5 −1.0 (5)
C4—C5—C7—C12 −118.5 (4) C16—C15—C21—O1 −11.5 (5)
C6—C5—C7—C12 63.9 (4) C20—C15—C21—O1 169.3 (3)
C12—C7—C8—C9 −0.7 (5) C16—C15—C21—O2 165.7 (3)
C5—C7—C8—C9 177.6 (3) C20—C15—C21—O2 −13.5 (5)
C7—C8—C9—C10 −0.9 (6) C20—N5—C22—O3 −2.3 (6)
C8—C9—C10—C11 1.3 (6) C20—N5—C22—C23 179.6 (4)
C8—C9—C10—Cl1 −178.9 (3) O3—C22—C23—C24 44.3 (8)
C9—C10—C11—C12 −0.1 (6) N5—C22—C23—C24 −137.5 (7)
Cl1—C10—C11—C12 −179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5···O2 0.86 1.89 2.605 (4) 140
N2—H2A···O3i 0.86 2.15 2.977 (4) 163
N4—H4A···N1ii 0.86 2.16 2.988 (4) 163
N3—H3···O1iii 0.86 1.80 2.660 (4) 178
C14—H14C···O1iii 0.96 2.53 3.323 (6) 140
N2—H2B···O2iii 0.86 1.91 2.746 (4) 164
N4—H4B···O3iv 0.86 2.35 3.017 (3) 134

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, −y+1, −z; (iii) −x+1/2, −y+1/2, −z; (iv) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2025).

References

  1. Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.
  2. Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  9. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.
  13. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.
  14. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035501/ff2025sup1.cif

e-67-o2567-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035501/ff2025Isup2.hkl

e-67-o2567-Isup2.hkl (243.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035501/ff2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES