Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2676–o2677. doi: 10.1107/S1600536811037512

1,3-Dicyclo­hexyl-3-[(pyridin-2-yl)carbon­yl]urea monohydrate from synchrotron radiation

Alessandra C Pinheiro a, Marcus V N de Souza a, James L Wardell b,, Solange M S V Wardell c, Edward R T Tiekink d,*
PMCID: PMC3201464  PMID: 22058785

Abstract

The title urea derivative crystallizes as a monohydrate, C19H27N3O2·H2O. The central C3N grouping is almost planar (r.m.s. deviation = 0.0092 Å), and the amide and pyridine groups are substanti­ally twisted out this plane [dihedral angles = 62.80 (12) and 34.98 (10)°, respectively]. Supra­molecular double chains propagating along the b-axis direction feature in the crystal packing whereby linear chains sustained by N—H⋯O hydrogen bonds formed between the amide groups are linked by helical chains of water mol­ecules (linked by O—H⋯O hydrogen bonds). The H atom that participates in these water chains is disordered over two positions of equal occupancy. The double chains are connected into a two-dimensional array by C—H⋯O contacts and the layers stack along the a axis.

Related literature

For the preparation of N-(arenecarbon­yl)-N,N′-dicyclo­hexyl­urea derivatives, see: Kaiser et al. (2008); Neves Filho et al. (2007); Schotman (1991). For the crystal structures of related N-(arenecarbon­yl)-N,N′-dicyclo­hexyl­urea derivatives, see: Chérioux et al. (2002); Cai et al. (2009); Dhinaa et al. (2010); Orea Flores et al. (2006); Gallagher et al. (1999); Wang & Zhou (2008); Wu et al. (2006).graphic file with name e-67-o2676-scheme1.jpg

Experimental

Crystal data

  • C19H27N3O2·H2O

  • M r = 347.46

  • Monoclinic, Inline graphic

  • a = 18.639 (19) Å

  • b = 5.035 (5) Å

  • c = 21.59 (2) Å

  • β = 111.395 (9)°

  • V = 1887 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.6905 Å

  • μ = 0.05 mm−1

  • T = 120 K

  • 0.25 × 0.08 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.743, T max = 1.000

  • 13440 measured reflections

  • 3810 independent reflections

  • 3200 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.126

  • S = 1.06

  • 3810 reflections

  • 238 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037512/hb6408sup1.cif

e-67-o2676-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037512/hb6408Isup2.hkl

e-67-o2676-Isup2.hkl (183KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037512/hb6408Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 (1) 2.07 (1) 2.908 (3) 160 (2)
O1w—H1w⋯O2 0.84 (2) 1.98 (2) 2.820 (3) 174 (2)
O1w—H2w⋯O1wii 0.84 (3) 1.97 (3) 2.773 (4) 162 (4)
O1w—H3w⋯O1wiii 0.84 (3) 1.98 (3) 2.799 (4) 167 (4)
C17—H17⋯O1wiv 0.95 2.59 3.517 (4) 164
C18—H18⋯O2v 0.95 2.47 3.367 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank Professor W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

Reactions of arenecarboxylic acids with dicyclohexylcarbodiimide (DCC) in the presence of a catalyst, such as 1-hydroxybenzotriazole, HOBt, produce N-(arenecarbonyl)-N,N'-dicyclohexylureas (Kaiser et al., 2008; Neves Filho et al., 2007; Schotman, 1991). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Dhinaa et al., 2010; Orea Flores et al., 2006; Gallagher et al., 1999; Wang et al., 2008; Wu et al., 2006). Herein, we now report the crystal structure of the monohydrate of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea, (I).

A molecule of N,N'-dicyclohexyl- N-(pyridine-2-carbonyl)urea and a water molecule of solvation comprise the asymmetric unit of (I). Two of the water bound H atoms are disordered and have been assigned site occupancy factors of 0.50. The disorder is accounted for in terms of the dictates of hydrogen bonding in the crystal structure, see below. The pyridine ring is twisted out of the central C3N plane (r.m.s. deviation = 0.0092 Å) with the dihedral angle being 34.98 (10) °. The amide group is even more twisted out of the plane through the central ring forming a dihedral angle of 62.80 (12) °. Each of the cyclohexyl rings adopts a chair conformation.

Hydrogen bonding of the type O—H···O and N—H···O lead to the formation of supramolecular chains along the b axis, Table 1. The amide groups self-associate to form linear chains. Pairs of chains are linked by hydrogen bonding interactions involving the water molecules. Thus, the carbonyl-O2 atom is linked to the water molecule, and the remaining water-H atoms (each with site occupancy factor = 1/2) link water molecules into a helical chain, Fig. 2. The chains are linked into layers via C—H···O interactions, Table 1, which stack along the a direction.

Experimental

To a stirred solution of the pyridin-2-carboxylic acid (1 mmol) in anhydrous CH2Cl2 (25 ml) were added DCC (0.8 mmol, 1 equiv.) and HOBt (ca 10 mg). After leaving at room temperature for 2 h, the precipitate of N,N'-dicyclohexylurea was removed and the filtrate was poured into saturated aqueous NaHCO3 solution (20 ml). The organic material was extracted into EtOAc (3 x 20 ml), the combined layers dried over MgSO4, and rotary evaporated. The residue was chromatographed (10% to 50% EtOAc/hexanes) to give N-(pyridin-2-carbonyl)-N,N'-dicyclohexylurea. Yield: 60%, as a white solid. Recrystallization from moist EtOH gave the monohydrate as colourless laths.

1H NMR (400 MHz, CDCl3) δ: 8.57 (d, J = 3.6, 1H, H6), 7.78 (m, 1H, H4), 7.68 (d, J = 7.6, 1H, H3), 7.37 (m, 1H, H5), 6.09 (s, 1H, NH), 4.20 (m, 1H, NCH), 3.51 (m, 1H, NHCH), 0.8–2 (m, 20 H, cyclohexyl) p.p.m.. 13C NMR (100 MHz, CDCl3) δ: 168.1 (CON), 154.0 (CONH), 153.9 (C2), 148.5 (C6), 137.0 (C4), 125.1, 122.9 (C3 and C5), 56.4 (NCH), 49.8 (NHCH), 33.9, 32.4, 30.7, 26.2, 25.6, 25.4, 25.3, 24.9, 24.6 (cyclohexyl) p.p.m.. M.pt.: 415 K. IR (cm-1; KBr): 1710 (CONH) and 1680 (CON).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The O– and N-bound H atom were refined with the distance restraints 0.84±0.01 and 0.88±0.01 Å, respectively, and with Uiso(H) = yUeq(parent atom) for y = 1.2 for N and y = 1.5 for O. One of the water-bound H atoms was found to be disordered over two positions and each was assigned a site occupancy factor = 0.50.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

The supramolecular double-chain aligned along the b axis in the crystal structure of (I) formed through the agency of intermolecular O—H···O and N—H···O hydrogen bonding interactions shown as orange and blue dashed lines, respectively. Only one of the disordered water-H atoms is represented.

Fig. 3.

Fig. 3.

A view of the unit-cell contents in (I) shown in projection down the b axis [the direction of the supramolecular chains illustrated in Fig. 2] and highlighting the stacking of layers along the a direction. The O—H···O hydrogen bonds and C—H···O interactions are shown as orange and green dashed lines, respectively

Crystal data

C19H27N3O2·H2O F(000) = 752
Mr = 347.46 Dx = 1.223 Mg m3
Monoclinic, P21/c Synchrotron radiation, λ = 0.6905 Å
Hall symbol: -P 2ybc Cell parameters from 908 reflections
a = 18.639 (19) Å θ = 4.6–25.5°
b = 5.035 (5) Å µ = 0.05 mm1
c = 21.59 (2) Å T = 120 K
β = 111.395 (9)° Lath, colourless
V = 1887 (3) Å3 0.25 × 0.08 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3810 independent reflections
Radiation source: Daresbury SRS station 9.8 3200 reflections with I > 2σ(I)
silicon 111 Rint = 0.043
fine–slice ω scans θmax = 25.6°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −22→23
Tmin = 0.743, Tmax = 1.000 k = −6→6
13440 measured reflections l = −25→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.9558P] where P = (Fo2 + 2Fc2)/3
3810 reflections (Δ/σ)max < 0.001
238 parameters Δρmax = 0.36 e Å3
7 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.70258 (7) −0.1731 (2) 0.59067 (6) 0.0303 (3)
O2 0.91282 (6) 0.2990 (2) 0.60869 (5) 0.0301 (3)
N1 0.69415 (7) 0.2624 (3) 0.61576 (7) 0.0243 (3)
H1N 0.7086 (10) 0.425 (2) 0.6115 (9) 0.029*
N2 0.79274 (7) 0.1277 (3) 0.58142 (6) 0.0234 (3)
N3 0.83745 (8) 0.0413 (3) 0.72128 (7) 0.0337 (3)
C1 0.72692 (9) 0.0548 (3) 0.59806 (7) 0.0240 (3)
C2 0.62543 (9) 0.2342 (3) 0.63269 (8) 0.0258 (3)
H2 0.6196 0.0428 0.6423 0.031*
C3 0.55414 (10) 0.3205 (4) 0.57442 (8) 0.0338 (4)
H3A 0.5482 0.2074 0.5354 0.041*
H3B 0.5606 0.5065 0.5625 0.041*
C4 0.48146 (10) 0.2991 (4) 0.59151 (9) 0.0377 (4)
H4A 0.4366 0.3659 0.5537 0.045*
H4B 0.4719 0.1105 0.5988 0.045*
C5 0.49011 (10) 0.4583 (4) 0.65350 (9) 0.0396 (4)
H5A 0.4935 0.6496 0.6443 0.048*
H5B 0.4440 0.4314 0.6653 0.048*
C6 0.56154 (11) 0.3759 (5) 0.71165 (9) 0.0468 (5)
H6A 0.5553 0.1908 0.7243 0.056*
H6B 0.5673 0.4914 0.7503 0.056*
C7 0.63413 (10) 0.3957 (4) 0.69461 (8) 0.0354 (4)
H7A 0.6438 0.5840 0.6870 0.043*
H7B 0.6790 0.3294 0.7325 0.043*
C8 0.78688 (9) 0.0807 (3) 0.51160 (7) 0.0245 (3)
H8 0.8211 0.2131 0.5015 0.029*
C9 0.81573 (9) −0.1941 (3) 0.50312 (8) 0.0276 (3)
H9A 0.7841 −0.3306 0.5141 0.033*
H9B 0.8697 −0.2155 0.5341 0.033*
C10 0.81124 (10) −0.2337 (3) 0.43150 (8) 0.0308 (4)
H10A 0.8470 −0.1091 0.4221 0.037*
H10B 0.8274 −0.4169 0.4261 0.037*
C11 0.72974 (10) −0.1862 (4) 0.38230 (8) 0.0333 (4)
H11A 0.6947 −0.3211 0.3891 0.040*
H11B 0.7287 −0.2052 0.3363 0.040*
C12 0.70189 (10) 0.0901 (4) 0.39131 (8) 0.0331 (4)
H12A 0.6483 0.1150 0.3599 0.040*
H12B 0.7346 0.2253 0.3812 0.040*
C13 0.70517 (9) 0.1285 (3) 0.46261 (8) 0.0285 (3)
H13A 0.6889 0.3113 0.4681 0.034*
H13B 0.6694 0.0028 0.4717 0.034*
C14 0.85976 (9) 0.2239 (3) 0.62575 (7) 0.0241 (3)
C15 0.87147 (9) 0.2303 (3) 0.69852 (7) 0.0250 (3)
C16 0.85324 (11) 0.0380 (4) 0.78661 (9) 0.0406 (4)
H16 0.8300 −0.0960 0.8039 0.049*
C17 0.90154 (11) 0.2181 (4) 0.83078 (8) 0.0396 (4)
H17 0.9112 0.2064 0.8770 0.048*
C18 0.93532 (11) 0.4146 (4) 0.80637 (9) 0.0408 (4)
H18 0.9679 0.5435 0.8352 0.049*
C19 0.92055 (10) 0.4198 (4) 0.73843 (8) 0.0342 (4)
H19 0.9436 0.5503 0.7199 0.041*
O1W 0.97088 (8) 0.2514 (3) 0.50550 (6) 0.0385 (3)
H1W 0.9509 (12) 0.257 (5) 0.5347 (9) 0.058*
H2W 0.998 (2) 0.385 (5) 0.507 (2) 0.058* 0.50
H3W 0.994 (2) 0.107 (5) 0.508 (2) 0.058* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0384 (6) 0.0207 (6) 0.0363 (6) −0.0051 (5) 0.0192 (5) −0.0030 (5)
O2 0.0307 (6) 0.0385 (7) 0.0230 (5) −0.0049 (5) 0.0121 (5) 0.0002 (5)
N1 0.0300 (7) 0.0190 (6) 0.0281 (7) −0.0023 (5) 0.0155 (6) −0.0002 (5)
N2 0.0295 (7) 0.0234 (6) 0.0195 (6) −0.0012 (5) 0.0116 (5) −0.0010 (5)
N3 0.0417 (8) 0.0361 (8) 0.0248 (7) −0.0032 (6) 0.0138 (6) 0.0041 (6)
C1 0.0287 (8) 0.0223 (8) 0.0220 (7) −0.0013 (6) 0.0104 (6) 0.0004 (6)
C2 0.0305 (8) 0.0239 (8) 0.0284 (8) −0.0001 (6) 0.0172 (7) 0.0030 (6)
C3 0.0312 (9) 0.0483 (10) 0.0232 (8) −0.0035 (7) 0.0114 (7) −0.0021 (7)
C4 0.0293 (9) 0.0512 (11) 0.0327 (9) −0.0017 (8) 0.0115 (7) 0.0044 (8)
C5 0.0344 (9) 0.0495 (11) 0.0410 (10) 0.0074 (8) 0.0208 (8) 0.0028 (8)
C6 0.0408 (10) 0.0770 (15) 0.0279 (9) 0.0091 (10) 0.0190 (8) 0.0026 (9)
C7 0.0320 (9) 0.0524 (11) 0.0225 (8) 0.0037 (8) 0.0106 (7) −0.0017 (8)
C8 0.0313 (8) 0.0277 (8) 0.0169 (7) −0.0018 (6) 0.0116 (6) −0.0017 (6)
C9 0.0322 (8) 0.0265 (8) 0.0229 (8) 0.0026 (6) 0.0087 (6) −0.0008 (6)
C10 0.0396 (9) 0.0294 (9) 0.0261 (8) 0.0027 (7) 0.0152 (7) −0.0037 (7)
C11 0.0419 (10) 0.0359 (9) 0.0199 (8) −0.0003 (7) 0.0085 (7) −0.0042 (7)
C12 0.0367 (9) 0.0354 (9) 0.0228 (8) 0.0031 (7) 0.0058 (7) −0.0014 (7)
C13 0.0320 (8) 0.0275 (8) 0.0266 (8) 0.0016 (7) 0.0113 (7) −0.0013 (6)
C14 0.0307 (8) 0.0217 (7) 0.0210 (7) 0.0015 (6) 0.0107 (6) 0.0015 (6)
C15 0.0292 (8) 0.0277 (8) 0.0195 (7) 0.0029 (6) 0.0105 (6) 0.0009 (6)
C16 0.0501 (11) 0.0479 (11) 0.0275 (9) −0.0006 (9) 0.0187 (8) 0.0071 (8)
C17 0.0428 (10) 0.0571 (12) 0.0188 (8) 0.0073 (9) 0.0111 (7) 0.0022 (8)
C18 0.0412 (10) 0.0490 (11) 0.0269 (9) −0.0013 (8) 0.0061 (8) −0.0112 (8)
C19 0.0417 (10) 0.0357 (10) 0.0274 (8) −0.0052 (7) 0.0152 (7) −0.0043 (7)
O1W 0.0490 (8) 0.0421 (7) 0.0340 (7) −0.0052 (6) 0.0263 (6) −0.0011 (6)

Geometric parameters (Å, °)

O1—C1 1.223 (2) C8—C13 1.523 (2)
O2—C14 1.234 (2) C8—H8 1.0000
N1—C1 1.335 (2) C9—C10 1.531 (3)
N1—C2 1.461 (2) C9—H9A 0.9900
N1—H1N 0.875 (9) C9—H9B 0.9900
N2—C14 1.356 (2) C10—C11 1.522 (3)
N2—C1 1.446 (2) C10—H10A 0.9900
N2—C8 1.490 (2) C10—H10B 0.9900
N3—C16 1.332 (3) C11—C12 1.522 (3)
N3—C15 1.333 (2) C11—H11A 0.9900
C2—C7 1.522 (3) C11—H11B 0.9900
C2—C3 1.522 (3) C12—C13 1.530 (3)
C2—H2 1.0000 C12—H12A 0.9900
C3—C4 1.532 (3) C12—H12B 0.9900
C3—H3A 0.9900 C13—H13A 0.9900
C3—H3B 0.9900 C13—H13B 0.9900
C4—C5 1.517 (3) C14—C15 1.506 (2)
C4—H4A 0.9900 C15—C19 1.384 (2)
C4—H4B 0.9900 C16—C17 1.384 (3)
C5—C6 1.517 (3) C16—H16 0.9500
C5—H5A 0.9900 C17—C18 1.377 (3)
C5—H5B 0.9900 C17—H17 0.9500
C6—C7 1.529 (3) C18—C19 1.391 (3)
C6—H6A 0.9900 C18—H18 0.9500
C6—H6B 0.9900 C19—H19 0.9500
C7—H7A 0.9900 O1W—H1W 0.842 (10)
C7—H7B 0.9900 O1W—H2W 0.839 (10)
C8—C9 1.520 (3) O1W—H3W 0.838 (10)
C1—N1—C2 121.98 (13) C8—C9—C10 110.41 (13)
C1—N1—H1N 120.7 (12) C8—C9—H9A 109.6
C2—N1—H1N 116.7 (12) C10—C9—H9A 109.6
C14—N2—C1 124.18 (14) C8—C9—H9B 109.6
C14—N2—C8 118.65 (13) C10—C9—H9B 109.6
C1—N2—C8 117.10 (12) H9A—C9—H9B 108.1
C16—N3—C15 116.63 (16) C11—C10—C9 110.95 (14)
O1—C1—N1 125.83 (15) C11—C10—H10A 109.5
O1—C1—N2 120.91 (13) C9—C10—H10A 109.4
N1—C1—N2 113.01 (14) C11—C10—H10B 109.4
N1—C2—C7 110.20 (13) C9—C10—H10B 109.5
N1—C2—C3 110.25 (14) H10A—C10—H10B 108.0
C7—C2—C3 110.76 (14) C10—C11—C12 110.77 (14)
N1—C2—H2 108.5 C10—C11—H11A 109.5
C7—C2—H2 108.5 C12—C11—H11A 109.5
C3—C2—H2 108.5 C10—C11—H11B 109.5
C2—C3—C4 111.27 (15) C12—C11—H11B 109.5
C2—C3—H3A 109.4 H11A—C11—H11B 108.1
C4—C3—H3A 109.4 C11—C12—C13 110.71 (14)
C2—C3—H3B 109.4 C11—C12—H12A 109.5
C4—C3—H3B 109.4 C13—C12—H12A 109.5
H3A—C3—H3B 108.0 C11—C12—H12B 109.5
C5—C4—C3 110.89 (15) C13—C12—H12B 109.5
C5—C4—H4A 109.5 H12A—C12—H12B 108.1
C3—C4—H4A 109.5 C8—C13—C12 109.96 (14)
C5—C4—H4B 109.5 C8—C13—H13A 109.7
C3—C4—H4B 109.5 C12—C13—H13A 109.7
H4A—C4—H4B 108.1 C8—C13—H13B 109.7
C6—C5—C4 111.37 (16) C12—C13—H13B 109.7
C6—C5—H5A 109.4 H13A—C13—H13B 108.2
C4—C5—H5A 109.4 O2—C14—N2 122.07 (15)
C6—C5—H5B 109.4 O2—C14—C15 118.57 (14)
C4—C5—H5B 109.4 N2—C14—C15 119.32 (14)
H5A—C5—H5B 108.0 N3—C15—C19 123.94 (15)
C5—C6—C7 111.68 (16) N3—C15—C14 117.52 (14)
C5—C6—H6A 109.3 C19—C15—C14 118.40 (14)
C7—C6—H6A 109.3 N3—C16—C17 123.96 (18)
C5—C6—H6B 109.3 N3—C16—H16 118.0
C7—C6—H6B 109.3 C17—C16—H16 118.0
H6A—C6—H6B 107.9 C18—C17—C16 118.71 (17)
C2—C7—C6 110.88 (15) C18—C17—H17 120.6
C2—C7—H7A 109.5 C16—C17—H17 120.6
C6—C7—H7A 109.5 C17—C18—C19 118.37 (17)
C2—C7—H7B 109.5 C17—C18—H18 120.8
C6—C7—H7B 109.5 C19—C18—H18 120.8
H7A—C7—H7B 108.1 C15—C19—C18 118.38 (17)
N2—C8—C9 111.57 (12) C15—C19—H19 120.8
N2—C8—C13 111.29 (13) C18—C19—H19 120.8
C9—C8—C13 111.61 (13) H1W—O1W—H2W 112 (3)
N2—C8—H8 107.4 H1W—O1W—H3W 109 (3)
C9—C8—H8 107.4 H2W—O1W—H3W 114 (4)
C13—C8—H8 107.4
C2—N1—C1—O1 3.9 (2) C8—C9—C10—C11 −55.90 (18)
C2—N1—C1—N2 178.19 (12) C9—C10—C11—C12 56.71 (19)
C14—N2—C1—O1 −118.72 (17) C10—C11—C12—C13 −57.41 (19)
C8—N2—C1—O1 58.28 (19) N2—C8—C13—C12 177.61 (13)
C14—N2—C1—N1 66.67 (19) C9—C8—C13—C12 −57.02 (17)
C8—N2—C1—N1 −116.33 (15) C11—C12—C13—C8 57.10 (19)
C1—N1—C2—C7 136.11 (15) C1—N2—C14—O2 −175.44 (14)
C1—N1—C2—C3 −101.33 (17) C8—N2—C14—O2 7.6 (2)
N1—C2—C3—C4 −178.62 (14) C1—N2—C14—C15 6.9 (2)
C7—C2—C3—C4 −56.4 (2) C8—N2—C14—C15 −170.02 (13)
C2—C3—C4—C5 56.0 (2) C16—N3—C15—C19 −0.6 (3)
C3—C4—C5—C6 −55.1 (2) C16—N3—C15—C14 174.98 (15)
C4—C5—C6—C7 55.2 (2) O2—C14—C15—N3 −146.42 (16)
N1—C2—C7—C6 178.06 (15) N2—C14—C15—N3 31.3 (2)
C3—C2—C7—C6 55.8 (2) O2—C14—C15—C19 29.4 (2)
C5—C6—C7—C2 −55.4 (2) N2—C14—C15—C19 −152.84 (15)
C14—N2—C8—C9 87.09 (17) C15—N3—C16—C17 0.5 (3)
C1—N2—C8—C9 −90.08 (17) N3—C16—C17—C18 0.4 (3)
C14—N2—C8—C13 −147.52 (15) C16—C17—C18—C19 −1.3 (3)
C1—N2—C8—C13 35.31 (19) N3—C15—C19—C18 −0.2 (3)
N2—C8—C9—C10 −178.34 (13) C14—C15—C19—C18 −175.81 (15)
C13—C8—C9—C10 56.45 (17) C17—C18—C19—C15 1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O1i 0.877 (12) 2.067 (11) 2.908 (3) 160.4 (18)
O1w—H1w···O2 0.84 (2) 1.98 (2) 2.820 (3) 173.7 (19)
O1w—H2w···O1wii 0.84 (3) 1.97 (3) 2.773 (4) 162 (4)
O1w—H3w···O1wiii 0.84 (3) 1.98 (3) 2.799 (4) 167 (4)
C17—H17···O1wiv 0.95 2.59 3.517 (4) 164
C18—H18···O2v 0.95 2.47 3.367 (4) 157

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6408).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211–212.
  4. Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27–o29.
  5. Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607–1610.
  8. Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. pp. 468–472.
  9. Neves Filho, R. A. W., de Oliveira, R. N. & Srivastava, R. M. (2007). J. Braz. Chem. Soc 18, 1410–1414.
  10. Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922–o2923.
  11. Schotman, A. K. (1991). Rec. Trav. Chim. Pays-Bas, 110, 319–325.
  12. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Wang, C.-K. & Zhou, F.-Y. (2008). Acta Cryst. E64, o1451. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435–o437. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037512/hb6408sup1.cif

e-67-o2676-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037512/hb6408Isup2.hkl

e-67-o2676-Isup2.hkl (183KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037512/hb6408Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES