Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2623–o2624. doi: 10.1107/S1600536811036580

Ethyl 1-(4-methyl­phen­yl)-5-phenyl-4-phenyl­sulfon­yl-1H-pyrazole-3-carboxyl­ate

Hatem A Abdel-Aziz a,, Khalid A Al-Rashood a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201465  PMID: 22058766

Abstract

The title compound, C25H22N2O4S, features a tetra-substituted pyrazole ring. The dihedral angles formed between the five-membered ring (r.m.s. deviation = 0.007 Å) and the N- and C-bound phenyl rings are 48.10 (7) and 72.01 (7) °, respectively, indicating that the planes through the residues are significantly twisted from the plane through the heterocycle. The ester-CO2 group is also twisted out of this plane, with an O—C—C—N torsion angle of −29.04 (11)°. The sulfonyl-O atoms lie to one side of the pyrazole plane and the sulfonyl­phenyl ring to the other. The dihedral angle between the two ring planes is 70.63 (7) °. Supra­molecular arrays are formed in the crystal structure sustained by C—H⋯O and C—H⋯π(pyrazole) inter­actions and methyl-C—H⋯π(N-bound benzene) contacts.

Related literature

For background to the chemistry and biological activity of pyrazole derivatives, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2010).graphic file with name e-67-o2623-scheme1.jpg

Experimental

Crystal data

  • C25H22N2O4S

  • M r = 446.51

  • Triclinic, Inline graphic

  • a = 7.2440 (3) Å

  • b = 11.0798 (5) Å

  • c = 14.8247 (5) Å

  • α = 68.818 (4)°

  • β = 87.773 (3)°

  • γ = 81.241 (4)°

  • V = 1096.36 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.60 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.566, T max = 0.740

  • 7378 measured reflections

  • 4304 independent reflections

  • 4106 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.091

  • S = 0.85

  • 4304 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036580/bt5639sup1.cif

e-67-o2623-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036580/bt5639Isup2.hkl

e-67-o2623-Isup2.hkl (210.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036580/bt5639Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1,N2,C4–C6 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.45 3.2392 (19) 140
C16—H16⋯O2ii 0.95 2.49 3.3928 (18) 158
C17—H17⋯O1iii 0.95 2.50 3.3895 (18) 157
C18—H18⋯O2iii 0.95 2.58 3.4031 (17) 145
C23—H23⋯O4iv 0.95 2.59 3.3155 (18) 133
C15—H15⋯Cg1i 0.95 2.80 3.6781 (15) 154
C25—H25c⋯Cg2v 0.98 2.64 3.5649 (16) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the research center, College of Pharmacy, and Deanship of Scientific Research, King Saud University, for financial support of this project. The University of Malaya is also thanked for support of the crystallographic facility.

supplementary crystallographic information

Comment

Our previous work evaluating the biological potential of pyrazole derivatives (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2010) lead to the characterization of the title compound, (I).

The molecular structure of (I), Fig. 1, features a tetra-substituted pyrazole ring. The ester group is twisted out of the plane through the five-membered ring (r.m.s. deviation = 0.007 Å) as seen in the value of the O3—C3—C4—N1 torsion angle of -29.04 (11) °. The ring-connected benzene rings, (C13–C18) and (19–C24), form dihedral angles of 72.01 (7) and 48.10 (7) °, respectively, with the pyrazole ring also indicating significant twists; the dihedral angle between the two ring-bound benzene rings is 71.93 (7) °. With respect to the least-squares plane through the pyrazole ring, the sulfonyl-O atoms lie to one side, and the benzene ring to the other; the dihedral angle between the pyrazole and sulfonyl-benzene rings is 70.63 (7) °, indicating an almost orthogonal relationship.

The crystal structure features supramolecular arrays in the ac plane sustained by C—H···O and C—H···π interactions [involving the pyrazole ring as the acceptor], Fig. 2 and Table 1. Layers are connected along the b direction by C—H···.π interactions involving methyl-H and the N-bound benzene ring, Fig. 3 and Table 1.

Experimental

1-Phenyl-2-(phenylsulfonyl)ethanone (0.26 g, 1 mmol) was added to a stirred ethanolic sodium ethoxide solution [prepared from sodium metal (0.023 g, 1 mmol) and 25 ml of absolute ethanol]. After stirring for 20 min, ethyl 2-chloro-2-(2-p-tolylhydrazono)acetate (0.241 g, 1 mmol) was added and the reaction mixture was left to stir at room temperature for 12 h. Cold water (50 ml) was then added. The solid product was collected by filtration, washed with water and dried. Recrystallization from ethanol afforded the title pyrazole. The yellow blocks were isolated from its ethanol solution by slow evaporation at room temperature

Refinement

H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular array in the ac plane in (I) mediated by C—H···O and C—H···π interactions shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C25H22N2O4S Z = 2
Mr = 446.51 F(000) = 468
Triclinic, P1 Dx = 1.353 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.2440 (3) Å Cell parameters from 5331 reflections
b = 11.0798 (5) Å θ = 3.2–74.1°
c = 14.8247 (5) Å µ = 1.60 mm1
α = 68.818 (4)° T = 100 K
β = 87.773 (3)° Block, yellow
γ = 81.241 (4)° 0.40 × 0.30 × 0.20 mm
V = 1096.36 (8) Å3

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 4304 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4106 reflections with I > 2σ(I)
mirror Rint = 0.014
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 3.2°
ω scan h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→13
Tmin = 0.566, Tmax = 0.740 l = −18→15
7378 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.060P)2 + 0.8665P] where P = (Fo2 + 2Fc2)/3
4304 reflections (Δ/σ)max < 0.001
290 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.44173 (4) 0.70984 (3) 0.10567 (2) 0.01551 (10)
O1 0.24561 (13) 0.75817 (9) 0.09106 (7) 0.0201 (2)
O2 0.54033 (14) 0.66162 (9) 0.03658 (7) 0.0202 (2)
O3 0.08177 (14) 0.59487 (10) 0.38398 (9) 0.0275 (2)
O4 0.19467 (16) 0.77438 (10) 0.28475 (8) 0.0280 (2)
N1 0.40421 (15) 0.44865 (11) 0.36938 (8) 0.0161 (2)
N2 0.55383 (15) 0.39169 (10) 0.33340 (8) 0.0150 (2)
C1 −0.2495 (2) 0.66923 (19) 0.37793 (12) 0.0333 (4)
H1A −0.3481 0.7238 0.3990 0.050*
H1B −0.2743 0.5785 0.4023 0.050*
H1C −0.2470 0.7016 0.3071 0.050*
C2 −0.0656 (2) 0.67488 (16) 0.41664 (13) 0.0286 (3)
H2A −0.0413 0.7666 0.3935 0.034*
H2B −0.0672 0.6418 0.4882 0.034*
C3 0.20136 (18) 0.65804 (13) 0.31954 (9) 0.0171 (3)
C4 0.35304 (18) 0.56389 (12) 0.30001 (9) 0.0156 (3)
C5 0.46821 (18) 0.58099 (12) 0.21819 (9) 0.0152 (3)
C6 0.59874 (18) 0.46782 (12) 0.24248 (9) 0.0148 (3)
C7 0.55863 (19) 0.83215 (12) 0.11696 (9) 0.0171 (3)
C8 0.7518 (2) 0.82100 (14) 0.10621 (10) 0.0225 (3)
H8 0.8189 0.7490 0.0927 0.027*
C9 0.8443 (2) 0.91673 (15) 0.11553 (12) 0.0272 (3)
H9 0.9760 0.9106 0.1086 0.033*
C10 0.7444 (2) 1.02163 (14) 0.13504 (11) 0.0271 (3)
H10 0.8083 1.0868 0.1417 0.033*
C11 0.5522 (2) 1.03192 (14) 0.14486 (11) 0.0247 (3)
H11 0.4851 1.1045 0.1577 0.030*
C12 0.4571 (2) 0.93691 (13) 0.13606 (10) 0.0206 (3)
H12 0.3254 0.9434 0.1429 0.025*
C13 0.76709 (18) 0.42800 (12) 0.19410 (9) 0.0149 (3)
C14 0.94252 (19) 0.42706 (13) 0.23053 (10) 0.0182 (3)
H14 0.9520 0.4530 0.2845 0.022*
C15 1.10313 (19) 0.38814 (13) 0.18770 (10) 0.0207 (3)
H15 1.2224 0.3885 0.2120 0.025*
C16 1.0902 (2) 0.34872 (13) 0.10965 (10) 0.0209 (3)
H16 1.2004 0.3216 0.0808 0.025*
C17 0.9159 (2) 0.34899 (13) 0.07374 (10) 0.0204 (3)
H17 0.9071 0.3216 0.0205 0.025*
C18 0.75398 (19) 0.38910 (13) 0.11527 (9) 0.0179 (3)
H18 0.6350 0.3900 0.0901 0.022*
C19 0.63396 (17) 0.26085 (12) 0.39171 (9) 0.0155 (3)
C20 0.66215 (19) 0.16297 (13) 0.35283 (10) 0.0184 (3)
H20 0.6400 0.1831 0.2859 0.022*
C21 0.72330 (19) 0.03502 (13) 0.41333 (10) 0.0203 (3)
H21 0.7447 −0.0321 0.3869 0.024*
C22 0.75393 (19) 0.00307 (13) 0.51205 (10) 0.0185 (3)
C23 0.72672 (19) 0.10390 (13) 0.54866 (10) 0.0188 (3)
H23 0.7490 0.0843 0.6155 0.023*
C24 0.66765 (18) 0.23258 (13) 0.48902 (10) 0.0173 (3)
H24 0.6506 0.3005 0.5148 0.021*
C25 0.8151 (2) −0.13619 (13) 0.57784 (11) 0.0236 (3)
H25A 0.7437 −0.1943 0.5618 0.035*
H25B 0.7929 −0.1440 0.6452 0.035*
H25C 0.9485 −0.1610 0.5694 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01730 (17) 0.01487 (16) 0.01383 (16) −0.00005 (12) −0.00058 (11) −0.00538 (12)
O1 0.0178 (5) 0.0213 (5) 0.0204 (5) 0.0010 (4) −0.0032 (4) −0.0078 (4)
O2 0.0245 (5) 0.0202 (5) 0.0160 (5) 0.0000 (4) 0.0020 (4) −0.0081 (4)
O3 0.0186 (5) 0.0235 (5) 0.0454 (7) −0.0040 (4) 0.0133 (4) −0.0193 (5)
O4 0.0408 (6) 0.0168 (5) 0.0235 (5) 0.0020 (4) 0.0076 (4) −0.0071 (4)
N1 0.0138 (5) 0.0168 (5) 0.0186 (5) −0.0007 (4) 0.0022 (4) −0.0082 (4)
N2 0.0137 (5) 0.0147 (5) 0.0161 (5) 0.0000 (4) 0.0019 (4) −0.0059 (4)
C1 0.0208 (8) 0.0498 (10) 0.0336 (9) 0.0035 (7) 0.0001 (6) −0.0237 (8)
C2 0.0190 (7) 0.0290 (8) 0.0450 (9) −0.0018 (6) 0.0104 (6) −0.0237 (7)
C3 0.0162 (6) 0.0197 (6) 0.0172 (6) −0.0001 (5) −0.0026 (5) −0.0096 (5)
C4 0.0145 (6) 0.0162 (6) 0.0174 (6) −0.0017 (5) −0.0006 (5) −0.0079 (5)
C5 0.0158 (6) 0.0146 (6) 0.0159 (6) −0.0019 (5) −0.0003 (5) −0.0065 (5)
C6 0.0153 (6) 0.0156 (6) 0.0151 (6) −0.0035 (5) −0.0003 (5) −0.0068 (5)
C7 0.0204 (7) 0.0145 (6) 0.0143 (6) −0.0021 (5) −0.0003 (5) −0.0029 (5)
C8 0.0215 (7) 0.0195 (7) 0.0240 (7) −0.0006 (5) 0.0022 (5) −0.0062 (6)
C9 0.0211 (7) 0.0243 (7) 0.0330 (8) −0.0051 (6) 0.0006 (6) −0.0059 (6)
C10 0.0314 (8) 0.0199 (7) 0.0294 (8) −0.0087 (6) −0.0025 (6) −0.0059 (6)
C11 0.0310 (8) 0.0150 (6) 0.0271 (7) −0.0011 (6) −0.0006 (6) −0.0072 (6)
C12 0.0212 (7) 0.0172 (6) 0.0208 (7) 0.0002 (5) −0.0005 (5) −0.0050 (5)
C13 0.0164 (6) 0.0118 (6) 0.0152 (6) −0.0012 (5) 0.0020 (5) −0.0037 (5)
C14 0.0192 (7) 0.0178 (6) 0.0193 (6) −0.0036 (5) 0.0011 (5) −0.0083 (5)
C15 0.0160 (7) 0.0202 (7) 0.0249 (7) −0.0030 (5) 0.0014 (5) −0.0070 (5)
C16 0.0209 (7) 0.0169 (6) 0.0223 (7) −0.0007 (5) 0.0075 (5) −0.0055 (5)
C17 0.0264 (7) 0.0179 (6) 0.0171 (6) −0.0013 (5) 0.0033 (5) −0.0075 (5)
C18 0.0195 (7) 0.0173 (6) 0.0173 (6) −0.0020 (5) −0.0006 (5) −0.0068 (5)
C19 0.0122 (6) 0.0137 (6) 0.0188 (6) −0.0014 (5) 0.0018 (5) −0.0040 (5)
C20 0.0184 (7) 0.0191 (6) 0.0183 (6) −0.0026 (5) 0.0015 (5) −0.0077 (5)
C21 0.0200 (7) 0.0167 (6) 0.0258 (7) −0.0025 (5) 0.0037 (5) −0.0099 (5)
C22 0.0134 (6) 0.0166 (6) 0.0233 (7) −0.0025 (5) 0.0029 (5) −0.0046 (5)
C23 0.0169 (6) 0.0199 (7) 0.0177 (6) −0.0028 (5) 0.0013 (5) −0.0046 (5)
C24 0.0165 (6) 0.0168 (6) 0.0192 (6) −0.0022 (5) 0.0020 (5) −0.0073 (5)
C25 0.0216 (7) 0.0168 (7) 0.0278 (7) −0.0017 (5) 0.0031 (6) −0.0033 (6)

Geometric parameters (Å, °)

S1—O1 1.4354 (10) C11—C12 1.388 (2)
S1—O2 1.4378 (10) C11—H11 0.9500
S1—C5 1.7544 (13) C12—H12 0.9500
S1—C7 1.7624 (14) C13—C18 1.3947 (18)
O3—C3 1.3380 (17) C13—C14 1.3971 (19)
O3—C2 1.4635 (16) C14—C15 1.3894 (19)
O4—C3 1.1968 (17) C14—H14 0.9500
N1—C4 1.3274 (17) C15—C16 1.387 (2)
N1—N2 1.3592 (15) C15—H15 0.9500
N2—C6 1.3646 (17) C16—C17 1.389 (2)
N2—C19 1.4362 (16) C16—H16 0.9500
C1—C2 1.489 (2) C17—C18 1.3909 (19)
C1—H1A 0.9800 C17—H17 0.9500
C1—H1B 0.9800 C18—H18 0.9500
C1—H1C 0.9800 C19—C24 1.3843 (19)
C2—H2A 0.9900 C19—C20 1.3875 (18)
C2—H2B 0.9900 C20—C21 1.3897 (19)
C3—C4 1.4913 (17) C20—H20 0.9500
C4—C5 1.4165 (18) C21—C22 1.394 (2)
C5—C6 1.3911 (18) C21—H21 0.9500
C6—C13 1.4809 (17) C22—C23 1.3942 (19)
C7—C12 1.3891 (19) C22—C25 1.5054 (18)
C7—C8 1.394 (2) C23—C24 1.3893 (19)
C8—C9 1.387 (2) C23—H23 0.9500
C8—H8 0.9500 C24—H24 0.9500
C9—C10 1.389 (2) C25—H25A 0.9800
C9—H9 0.9500 C25—H25B 0.9800
C10—C11 1.386 (2) C25—H25C 0.9800
C10—H10 0.9500
O1—S1—O2 119.33 (6) C12—C11—H11 119.8
O1—S1—C5 106.92 (6) C10—C11—H11 119.8
O2—S1—C5 106.93 (6) C11—C12—C7 118.58 (13)
O1—S1—C7 109.11 (6) C11—C12—H12 120.7
O2—S1—C7 107.81 (6) C7—C12—H12 120.7
C5—S1—C7 105.98 (6) C18—C13—C14 119.85 (12)
C3—O3—C2 117.09 (11) C18—C13—C6 121.66 (12)
C4—N1—N2 104.77 (10) C14—C13—C6 118.48 (11)
N1—N2—C6 113.13 (10) C15—C14—C13 119.85 (12)
N1—N2—C19 117.27 (10) C15—C14—H14 120.1
C6—N2—C19 129.49 (11) C13—C14—H14 120.1
C2—C1—H1A 109.5 C16—C15—C14 120.34 (13)
C2—C1—H1B 109.5 C16—C15—H15 119.8
H1A—C1—H1B 109.5 C14—C15—H15 119.8
C2—C1—H1C 109.5 C15—C16—C17 119.82 (12)
H1A—C1—H1C 109.5 C15—C16—H16 120.1
H1B—C1—H1C 109.5 C17—C16—H16 120.1
O3—C2—C1 109.39 (12) C16—C17—C18 120.42 (13)
O3—C2—H2A 109.8 C16—C17—H17 119.8
C1—C2—H2A 109.8 C18—C17—H17 119.8
O3—C2—H2B 109.8 C17—C18—C13 119.72 (13)
C1—C2—H2B 109.8 C17—C18—H18 120.1
H2A—C2—H2B 108.2 C13—C18—H18 120.1
O4—C3—O3 125.36 (12) C24—C19—C20 120.89 (12)
O4—C3—C4 123.58 (13) C24—C19—N2 118.50 (11)
O3—C3—C4 110.98 (11) C20—C19—N2 120.40 (12)
N1—C4—C5 111.39 (11) C21—C20—C19 119.00 (12)
N1—C4—C3 118.83 (11) C21—C20—H20 120.5
C5—C4—C3 129.57 (12) C19—C20—H20 120.5
C6—C5—C4 105.42 (11) C20—C21—C22 121.40 (13)
C6—C5—S1 126.52 (10) C20—C21—H21 119.3
C4—C5—S1 127.84 (10) C22—C21—H21 119.3
N2—C6—C5 105.29 (11) C23—C22—C21 118.19 (12)
N2—C6—C13 121.29 (11) C23—C22—C25 120.56 (13)
C5—C6—C13 133.20 (12) C21—C22—C25 121.25 (13)
C12—C7—C8 121.65 (13) C24—C23—C22 121.16 (13)
C12—C7—S1 119.59 (11) C24—C23—H23 119.4
C8—C7—S1 118.76 (10) C22—C23—H23 119.4
C9—C8—C7 118.91 (13) C19—C24—C23 119.33 (12)
C9—C8—H8 120.5 C19—C24—H24 120.3
C7—C8—H8 120.5 C23—C24—H24 120.3
C10—C9—C8 119.93 (14) C22—C25—H25A 109.5
C10—C9—H9 120.0 C22—C25—H25B 109.5
C8—C9—H9 120.0 H25A—C25—H25B 109.5
C9—C10—C11 120.51 (14) C22—C25—H25C 109.5
C9—C10—H10 119.7 H25A—C25—H25C 109.5
C11—C10—H10 119.7 H25B—C25—H25C 109.5
C12—C11—C10 120.40 (13)
C4—N1—N2—C6 −0.25 (14) C12—C7—C8—C9 0.4 (2)
C4—N1—N2—C19 −176.77 (11) S1—C7—C8—C9 −179.68 (11)
C3—O3—C2—C1 110.72 (15) C7—C8—C9—C10 −0.2 (2)
C2—O3—C3—O4 −2.0 (2) C8—C9—C10—C11 −0.3 (2)
C2—O3—C3—C4 174.84 (12) C9—C10—C11—C12 0.5 (2)
N2—N1—C4—C5 0.83 (14) C10—C11—C12—C7 −0.2 (2)
N2—N1—C4—C3 −174.42 (11) C8—C7—C12—C11 −0.3 (2)
O4—C3—C4—N1 147.76 (14) S1—C7—C12—C11 179.87 (11)
O3—C3—C4—N1 −29.15 (17) N2—C6—C13—C18 109.94 (15)
O4—C3—C4—C5 −26.5 (2) C5—C6—C13—C18 −76.46 (19)
O3—C3—C4—C5 156.60 (13) N2—C6—C13—C14 −68.59 (16)
N1—C4—C5—C6 −1.11 (15) C5—C6—C13—C14 105.00 (17)
C3—C4—C5—C6 173.49 (13) C18—C13—C14—C15 0.40 (19)
N1—C4—C5—S1 173.74 (10) C6—C13—C14—C15 178.96 (12)
C3—C4—C5—S1 −11.7 (2) C13—C14—C15—C16 −0.8 (2)
O1—S1—C5—C6 145.06 (11) C14—C15—C16—C17 0.4 (2)
O2—S1—C5—C6 16.17 (13) C15—C16—C17—C18 0.3 (2)
C7—S1—C5—C6 −98.65 (12) C16—C17—C18—C13 −0.6 (2)
O1—S1—C5—C4 −28.76 (13) C14—C13—C18—C17 0.31 (19)
O2—S1—C5—C4 −157.65 (12) C6—C13—C18—C17 −178.21 (12)
C7—S1—C5—C4 87.53 (13) N1—N2—C19—C24 −46.78 (16)
N1—N2—C6—C5 −0.43 (14) C6—N2—C19—C24 137.37 (14)
C19—N2—C6—C5 175.56 (12) N1—N2—C19—C20 127.96 (13)
N1—N2—C6—C13 174.73 (11) C6—N2—C19—C20 −47.90 (19)
C19—N2—C6—C13 −9.3 (2) C24—C19—C20—C21 0.6 (2)
C4—C5—C6—N2 0.88 (14) N2—C19—C20—C21 −173.97 (12)
S1—C5—C6—N2 −174.06 (10) C19—C20—C21—C22 1.0 (2)
C4—C5—C6—C13 −173.44 (13) C20—C21—C22—C23 −1.8 (2)
S1—C5—C6—C13 11.6 (2) C20—C21—C22—C25 178.30 (13)
O1—S1—C7—C12 16.54 (13) C21—C22—C23—C24 1.1 (2)
O2—S1—C7—C12 147.52 (11) C25—C22—C23—C24 −179.04 (12)
C5—S1—C7—C12 −98.27 (11) C20—C19—C24—C23 −1.4 (2)
O1—S1—C7—C8 −163.34 (10) N2—C19—C24—C23 173.35 (11)
O2—S1—C7—C8 −32.36 (12) C22—C23—C24—C19 0.5 (2)
C5—S1—C7—C8 81.85 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C4–C6 and C19–C24 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C9—H9···O1i 0.95 2.45 3.2392 (19) 140
C16—H16···O2ii 0.95 2.49 3.3928 (18) 158
C17—H17···O1iii 0.95 2.50 3.3895 (18) 157
C18—H18···O2iii 0.95 2.58 3.4031 (17) 145
C23—H23···O4iv 0.95 2.59 3.3155 (18) 133
C15—H15···Cg1i 0.95 2.80 3.6781 (15) 154
C25—H25c···Cg2v 0.98 2.64 3.5649 (16) 157

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5639).

References

  1. Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432. [DOI] [PubMed]
  2. Abdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230–237. [DOI] [PubMed]
  3. Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
  4. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036580/bt5639sup1.cif

e-67-o2623-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036580/bt5639Isup2.hkl

e-67-o2623-Isup2.hkl (210.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036580/bt5639Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES