Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1335. doi: 10.1107/S1600536811035380

Bis(acrylonitrile-κN)dichlorido(η4-cyclo­octa-1,5-diene)ruthenium(II)

Haleden Chiririwa a,*, Reinout Meijboom a
PMCID: PMC3201466  PMID: 22058687

Abstract

In the title complex, [RuCl2(C8H12)(C3H3N)2], the metal ion is coordinated to centers of each of the double bonds of the cyclo­octa-1,5-diene ligand, to two chloride ions (in cis positions) and to two N-atom donors from two acrylonitrile mol­ecules that complete the coordination sphere for the neutral complex. The coordination about the RuII atom can thus be considered octa­hedral with slight trigonal distortion. The three C atoms of one of the acrylonitrile ligands are disordered over two sets of sites in a 0.581 (13):0.419 (13) ratio.

Related literature

For a review of related compounds, see: Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987)graphic file with name e-67-m1335-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C8H12)(C3H3N)2]

  • M r = 386.27

  • Monoclinic, Inline graphic

  • a = 7.1079 (8) Å

  • b = 26.818 (3) Å

  • c = 8.1555 (10) Å

  • β = 101.408 (2)°

  • V = 1523.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 100 K

  • 0.22 × 0.09 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 12653 measured reflections

  • 3776 independent reflections

  • 3093 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.075

  • S = 1.03

  • 3776 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.11 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035380/jh2321sup1.cif

e-67-m1335-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035380/jh2321Isup2.hkl

e-67-m1335-Isup2.hkl (181.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

supplementary crystallographic information

Comment

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two acrylonitrile ligands are not trans to each other, as the N(2)—Ru—N(1) angle is 164.62 (11)° whereas the same angle is 163.15 (6)° in the acetonitrile derivative. This is attributed to repulsion by the alkene bonds of the COD ligand. One of the acrylonitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 179.2 (3)°. This is probably due to packing forces.

It turned out that in the crystal structure the disorder involves three carbon atoms between the 3 positions with site occupation factors of 84:16. A l l alternative positions refined quite well without any kind of restraints and the C atoms assume positions that make an almost symmetrical system.

Experimental

A suspension of [{RuCl2(COD)}x] (0.5 g) in acrylonitrile (25 ml) was refluxed for 12 h. The orange solution was filtered hot and concentrated on a steam bath to half volume and cooled to 0 °C overnight affording orange crystals in 50% yield suitable for X-ray diffraction studies.

Refinement

The methylene, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. The acrylonitrile ligand is disordered over 3 well resolved positions. The disorder involves three C atoms which assume positions that make an almost symmetrical system. Unfortunately this disorder could not be resolved.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some lables have been omitted for clarity.

Crystal data

[RuCl2(C8H12)(C3H3N)2] F(000) = 776
Mr = 386.27 Dx = 1.684 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3596 reflections
a = 7.1079 (8) Å θ = 2.7–28.2°
b = 26.818 (3) Å µ = 1.37 mm1
c = 8.1555 (10) Å T = 100 K
β = 101.408 (2)° Rectangular, orange
V = 1523.9 (3) Å3 0.22 × 0.09 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3093 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
graphite θmax = 28.3°, θmin = 1.5°
φ and ω scans h = −9→8
12653 measured reflections k = −35→35
3776 independent reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.2348P] where P = (Fo2 + 2Fc2)/3
3776 reflections (Δ/σ)max = 0.001
200 parameters Δρmax = 1.14 e Å3
0 restraints Δρmin = −1.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The Following Model and Quality ALERTS were generated -(Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7 Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.50503 (3) 0.634032 (9) 0.06561 (3) 0.01778 (7)
Cl1 0.75368 (12) 0.59883 (4) 0.27841 (13) 0.0487 (3)
Cl2 0.39293 (11) 0.68818 (3) 0.26070 (9) 0.02385 (16)
C1 0.3571 (5) 0.67769 (12) −0.1549 (4) 0.0284 (7)
H1 0.3868 0.7064 −0.0866 0.034*
C2 0.2289 (4) 0.64408 (13) −0.1127 (4) 0.0286 (7)
H2 0.1739 0.6513 −0.0182 0.034*
C3 0.1699 (5) 0.59630 (15) −0.2071 (5) 0.0404 (9)
H3A 0.088 0.6047 −0.3165 0.048*
H3B 0.0917 0.5762 −0.1436 0.048*
C4 0.3393 (5) 0.56453 (14) −0.2372 (5) 0.0403 (9)
H4A 0.3016 0.529 −0.2387 0.048*
H4B 0.3651 0.5727 −0.3491 0.048*
C5 0.5230 (4) 0.57127 (12) −0.1091 (5) 0.0283 (7)
H5 0.5447 0.5507 −0.0124 0.034*
C6 0.6595 (4) 0.60595 (13) −0.1271 (4) 0.0273 (7)
H6 0.7733 0.6072 −0.0434 0.033*
C7 0.6410 (5) 0.64203 (13) −0.2703 (4) 0.0333 (8)
H7A 0.6502 0.6233 −0.373 0.04*
H7B 0.7503 0.6656 −0.2476 0.04*
C8 0.4539 (6) 0.67198 (14) −0.3029 (4) 0.0369 (9)
H8A 0.4812 0.7057 −0.3421 0.044*
H8B 0.3627 0.6557 −0.3947 0.044*
C23 0.2232 (5) 0.48525 (13) 0.3860 (4) 0.0343 (8)
H23A 0.3572 0.4795 0.3995 0.041*
H23B 0.1468 0.4638 0.4388 0.041*
N1 0.6921 (4) 0.68978 (11) 0.0491 (3) 0.0305 (7)
C11A 0.7543 (16) 0.7291 (4) 0.0267 (11) 0.0137 (18) 0.419 (13)
C12A 0.8507 (12) 0.7726 (3) −0.0172 (8) 0.015 (2) 0.419 (13)
H12A 0.7749 0.8 −0.0659 0.018* 0.419 (13)
C13A 1.0368 (13) 0.7766 (3) 0.0062 (10) 0.022 (2) 0.419 (13)
H13A 1.116 0.7498 0.0546 0.027* 0.419 (13)
H13B 1.0932 0.8063 −0.0253 0.027* 0.419 (13)
C11B 0.8206 (11) 0.7163 (3) 0.0505 (9) 0.0170 (14) 0.581 (13)
C12B 0.9662 (8) 0.7536 (2) 0.0446 (6) 0.0183 (17) 0.581 (13)
H12B 1.0946 0.7477 0.1006 0.022* 0.581 (13)
C13B 0.9232 (10) 0.7954 (3) −0.0371 (7) 0.0249 (18) 0.581 (13)
H13C 0.7951 0.8016 −0.0934 0.03* 0.581 (13)
H13D 1.0202 0.8196 −0.04 0.03* 0.581 (13)
N2 0.3376 (4) 0.58267 (10) 0.1480 (4) 0.0267 (6)
C21 0.2527 (5) 0.55592 (12) 0.2127 (4) 0.0277 (7)
C22 0.1436 (5) 0.52268 (13) 0.2946 (4) 0.0288 (7)
H22 0.0094 0.5279 0.2824 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01229 (11) 0.01244 (12) 0.02730 (13) −0.00135 (9) 0.00074 (8) 0.00569 (10)
Cl1 0.0245 (4) 0.0659 (7) 0.0537 (6) 0.0169 (4) 0.0029 (4) 0.0357 (5)
Cl2 0.0281 (4) 0.0196 (4) 0.0208 (3) −0.0016 (3) −0.0026 (3) 0.0012 (3)
C1 0.0391 (18) 0.0215 (16) 0.0185 (14) 0.0115 (14) −0.0093 (13) −0.0031 (12)
C2 0.0191 (14) 0.0326 (19) 0.0292 (16) 0.0094 (13) −0.0074 (12) −0.0133 (14)
C3 0.0209 (16) 0.048 (2) 0.051 (2) −0.0056 (16) 0.0036 (15) −0.0299 (19)
C4 0.0284 (17) 0.032 (2) 0.066 (2) −0.0121 (16) 0.0226 (17) −0.0284 (19)
C5 0.0253 (16) 0.0136 (15) 0.052 (2) 0.0035 (13) 0.0211 (14) −0.0012 (14)
C6 0.0191 (14) 0.0271 (18) 0.0379 (17) −0.0002 (13) 0.0110 (13) 0.0002 (14)
C7 0.042 (2) 0.0281 (19) 0.0309 (17) −0.0093 (16) 0.0109 (15) −0.0038 (14)
C8 0.058 (2) 0.030 (2) 0.0201 (15) 0.0067 (18) 0.0004 (15) −0.0025 (14)
C23 0.039 (2) 0.0249 (18) 0.045 (2) −0.0067 (16) 0.0227 (16) −0.0051 (16)
N1 0.0380 (16) 0.0328 (17) 0.0196 (12) −0.0209 (14) 0.0030 (11) 0.0011 (12)
C11A 0.016 (5) 0.009 (4) 0.015 (4) 0.004 (3) −0.001 (3) 0.004 (3)
C12A 0.019 (4) 0.011 (4) 0.014 (3) 0.000 (3) 0.004 (3) 0.000 (3)
C13A 0.020 (5) 0.019 (4) 0.026 (4) −0.005 (4) −0.001 (3) 0.003 (3)
C11B 0.017 (3) 0.016 (4) 0.017 (3) 0.007 (3) −0.001 (2) 0.000 (2)
C12B 0.014 (3) 0.018 (3) 0.021 (3) −0.002 (2) −0.001 (2) −0.002 (2)
C13B 0.023 (3) 0.029 (4) 0.021 (3) −0.005 (3) 0.001 (2) 0.001 (3)
N2 0.0216 (13) 0.0173 (14) 0.0450 (16) −0.0011 (11) 0.0155 (12) −0.0004 (12)
C21 0.0246 (16) 0.0177 (16) 0.0448 (19) −0.0023 (13) 0.0163 (14) −0.0074 (14)
C22 0.0235 (16) 0.0261 (18) 0.0420 (18) −0.0075 (14) 0.0191 (14) −0.0071 (15)

Geometric parameters (Å, °)

Ru1—N2 2.021 (3) C7—C8 1.532 (5)
Ru1—N1 2.023 (3) C7—H7A 0.99
Ru1—C2 2.216 (3) C7—H7B 0.99
Ru1—C6 2.219 (3) C8—H8A 0.99
Ru1—C5 2.225 (3) C8—H8B 0.99
Ru1—C1 2.228 (3) C23—C22 1.310 (5)
Ru1—Cl2 2.4035 (8) C23—H23A 0.95
Ru1—Cl1 2.4111 (9) C23—H23B 0.95
C1—C2 1.373 (5) N1—C11B 1.156 (7)
C1—C8 1.511 (5) N1—C11A 1.171 (9)
C1—H1 0.95 C11A—C12A 1.434 (13)
C2—C3 1.511 (5) C12A—C13A 1.303 (14)
C2—H2 0.95 C12A—H12A 0.95
C3—C4 1.534 (5) C13A—H13A 0.95
C3—H3A 0.99 C13A—H13B 0.95
C3—H3B 0.99 C11B—C12B 1.447 (10)
C4—C5 1.513 (5) C12B—C13B 1.309 (11)
C4—H4A 0.99 C12B—H12B 0.95
C4—H4B 0.99 C13B—H13C 0.95
C5—C6 1.373 (4) C13B—H13D 0.95
C5—H5 0.95 N2—C21 1.132 (4)
C6—C7 1.503 (5) C21—C22 1.431 (4)
C6—H6 0.95 C22—H22 0.95
N2—Ru1—N1 164.62 (11) C3—C4—H4B 108.6
N2—Ru1—C2 78.32 (13) H4A—C4—H4B 107.5
N1—Ru1—C2 112.03 (13) C6—C5—C4 122.6 (3)
N2—Ru1—C6 114.26 (11) C6—C5—Ru1 71.78 (19)
N1—Ru1—C6 77.28 (12) C4—C5—Ru1 112.4 (2)
C2—Ru1—C6 94.29 (12) C6—C5—H5 118.7
N2—Ru1—C5 79.02 (11) C4—C5—H5 118.7
N1—Ru1—C5 113.25 (12) Ru1—C5—H5 85.9
C2—Ru1—C5 80.06 (12) C5—C6—C7 124.3 (3)
C6—Ru1—C5 35.98 (11) C5—C6—Ru1 72.24 (19)
N2—Ru1—C1 114.32 (13) C7—C6—Ru1 110.7 (2)
N1—Ru1—C1 76.67 (12) C5—C6—H6 117.8
C2—Ru1—C1 36.00 (13) C7—C6—H6 117.8
C6—Ru1—C1 80.07 (12) Ru1—C6—H6 87.1
C5—Ru1—C1 87.62 (12) C6—C7—C8 114.3 (3)
N2—Ru1—Cl2 84.11 (8) C6—C7—H7A 108.7
N1—Ru1—Cl2 84.59 (9) C8—C7—H7A 108.7
C2—Ru1—Cl2 89.67 (9) C6—C7—H7B 108.7
C6—Ru1—Cl2 161.63 (9) C8—C7—H7B 108.7
C5—Ru1—Cl2 161.70 (8) H7A—C7—H7B 107.6
C1—Ru1—Cl2 92.95 (9) C1—C8—C7 115.6 (3)
N2—Ru1—Cl1 83.67 (8) C1—C8—H8A 108.4
N1—Ru1—Cl1 86.52 (9) C7—C8—H8A 108.4
C2—Ru1—Cl1 161.43 (10) C1—C8—H8B 108.4
C6—Ru1—Cl1 88.96 (9) C7—C8—H8B 108.4
C5—Ru1—Cl1 92.18 (10) H8A—C8—H8B 107.4
C1—Ru1—Cl1 161.56 (10) C22—C23—H23A 120
Cl2—Ru1—Cl1 92.97 (3) C22—C23—H23B 120
C2—C1—C8 124.3 (3) H23A—C23—H23B 120
C2—C1—Ru1 71.52 (18) C11B—N1—Ru1 169.3 (5)
C8—C1—Ru1 112.0 (2) C11A—N1—Ru1 161.6 (6)
C2—C1—H1 117.9 N1—C11A—C12A 170.1 (10)
C8—C1—H1 117.9 C13A—C12A—C11A 123.5 (9)
Ru1—C1—H1 86.4 C13A—C12A—H12A 118.3
C1—C2—C3 124.1 (3) C11A—C12A—H12A 118.3
C1—C2—Ru1 72.48 (17) C12A—C13A—H13A 120
C3—C2—Ru1 110.6 (2) C12A—C13A—H13B 120
C1—C2—H2 118 H13A—C13A—H13B 120
C3—C2—H2 118 N1—C11B—C12B 173.7 (8)
Ru1—C2—H2 86.9 C13B—C12B—C11B 120.9 (7)
C2—C3—C4 113.9 (3) C13B—C12B—H12B 119.6
C2—C3—H3A 108.8 C11B—C12B—H12B 119.6
C4—C3—H3A 108.8 C12B—C13B—H13C 120
C2—C3—H3B 108.8 C12B—C13B—H13D 120
C4—C3—H3B 108.8 H13C—C13B—H13D 120
H3A—C3—H3B 107.7 C21—N2—Ru1 171.8 (3)
C5—C4—C3 114.9 (3) N2—C21—C22 179.2 (3)
C5—C4—H4A 108.6 C23—C22—C21 122.0 (3)
C3—C4—H4A 108.6 C23—C22—H22 119
C5—C4—H4B 108.6 C21—C22—H22 119
N2—Ru1—C1—C2 −0.5 (2) N1—Ru1—C5—C4 −116.6 (2)
N1—Ru1—C1—C2 −169.1 (2) C2—Ru1—C5—C4 −6.8 (3)
C6—Ru1—C1—C2 111.7 (2) C6—Ru1—C5—C4 −118.5 (4)
C5—Ru1—C1—C2 76.3 (2) C1—Ru1—C5—C4 −42.2 (3)
Cl2—Ru1—C1—C2 −85.38 (18) Cl2—Ru1—C5—C4 49.9 (5)
Cl1—Ru1—C1—C2 166.0 (2) Cl1—Ru1—C5—C4 156.2 (2)
N2—Ru1—C1—C8 −120.9 (2) C4—C5—C6—C7 2.2 (5)
N1—Ru1—C1—C8 70.5 (3) Ru1—C5—C6—C7 −103.3 (3)
C2—Ru1—C1—C8 −120.4 (3) C4—C5—C6—Ru1 105.5 (3)
C6—Ru1—C1—C8 −8.7 (2) N2—Ru1—C6—C5 12.6 (2)
C5—Ru1—C1—C8 −44.1 (3) N1—Ru1—C6—C5 −178.2 (2)
Cl2—Ru1—C1—C8 154.2 (2) C2—Ru1—C6—C5 −66.5 (2)
Cl1—Ru1—C1—C8 45.7 (4) C1—Ru1—C6—C5 −99.7 (2)
C8—C1—C2—C3 1.1 (5) Cl2—Ru1—C6—C5 −168.5 (2)
Ru1—C1—C2—C3 −103.4 (3) Cl1—Ru1—C6—C5 95.1 (2)
C8—C1—C2—Ru1 104.5 (3) N2—Ru1—C6—C7 133.4 (2)
N2—Ru1—C2—C1 179.5 (2) N1—Ru1—C6—C7 −57.4 (2)
N1—Ru1—C2—C1 11.4 (2) C2—Ru1—C6—C7 54.3 (2)
C6—Ru1—C2—C1 −66.6 (2) C5—Ru1—C6—C7 120.8 (3)
C5—Ru1—C2—C1 −99.8 (2) C1—Ru1—C6—C7 21.1 (2)
Cl2—Ru1—C2—C1 95.47 (18) Cl2—Ru1—C6—C7 −47.7 (4)
Cl1—Ru1—C2—C1 −166.1 (2) Cl1—Ru1—C6—C7 −144.0 (2)
N2—Ru1—C2—C3 −59.9 (3) C5—C6—C7—C8 51.7 (5)
N1—Ru1—C2—C3 132.0 (3) Ru1—C6—C7—C8 −30.5 (3)
C6—Ru1—C2—C3 54.0 (3) C2—C1—C8—C7 −87.3 (4)
C5—Ru1—C2—C3 20.8 (3) Ru1—C1—C8—C7 −5.3 (4)
C1—Ru1—C2—C3 120.6 (3) C6—C7—C8—C1 24.1 (4)
Cl2—Ru1—C2—C3 −144.0 (3) N2—Ru1—N1—C11B 72 (2)
Cl1—Ru1—C2—C3 −45.6 (4) C2—Ru1—N1—C11B −157 (2)
C1—C2—C3—C4 50.4 (5) C6—Ru1—N1—C11B −68 (2)
Ru1—C2—C3—C4 −31.9 (4) C5—Ru1—N1—C11B −69 (2)
C2—C3—C4—C5 27.1 (5) C1—Ru1—N1—C11B −150 (2)
C3—C4—C5—C6 −90.6 (4) Cl2—Ru1—N1—C11B 115 (2)
C3—C4—C5—Ru1 −8.5 (4) Cl1—Ru1—N1—C11B 22 (2)
N2—Ru1—C5—C6 −168.3 (2) N2—Ru1—N1—C11A −101.0 (15)
N1—Ru1—C5—C6 1.9 (2) C2—Ru1—N1—C11A 29.3 (15)
C2—Ru1—C5—C6 111.8 (2) C6—Ru1—N1—C11A 118.8 (15)
C1—Ru1—C5—C6 76.3 (2) C5—Ru1—N1—C11A 117.7 (15)
Cl2—Ru1—C5—C6 168.5 (2) C1—Ru1—N1—C11A 36.2 (15)
Cl1—Ru1—C5—C6 −85.2 (2) Cl2—Ru1—N1—C11A −58.1 (15)
N2—Ru1—C5—C4 73.1 (3) Cl1—Ru1—N1—C11A −151.4 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2321).

References

  1. Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183–188.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035380/jh2321sup1.cif

e-67-m1335-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035380/jh2321Isup2.hkl

e-67-m1335-Isup2.hkl (181.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES