Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2551. doi: 10.1107/S1600536811035288

6-Chloro-3-(3-methyl­phen­yl)-1,2,4-triazolo[4,3-b]pyridazine

Jasmin Preis a, Dieter Schollmeyer a, Heiner Detert a,*
PMCID: PMC3201469  PMID: 22058729

Abstract

The title compound, C12H9ClN4, was prepared from dichloro­pyridazine and tolyl­tetra­zole in a nucleophilic biaryl coupling followed by thermal ring transformation. The mol­ecule is essentially planar (r.m.s. deviation for all non-H atoms = 0.036 Å) and an intra­molecular C—H⋯N hydrogen bond occurs. In the crystal, the mol­ecules form dimers connected via π–π inter­actions [centroid–centroid distance = 3.699 (2) Å], which are further connected to neighbouring mol­ecules via C—H—N bonds. The bond lengths in the pyridazine ring system indicate a strong localization of the double bonds and there is a weak C—Cl bond [1.732 (3) Å].

Related literature

The acyl­ation of tetra­zoles with chloro­azines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen et al. (1961); Glang et al. (2008). For two benzo-annulated triazolopyridazines, see: Boulanger et al. (1991). For a highly phenyl­ated triazolopyrazine, see: Kozhevnikov et al. (2005)·For the synthesis of higher conjugated and annulated heterocyclic π-systems see: Detert & Schollmeyer (1999); Sugiono & Detert (2001). For the synthesis of 1,3,4-oxadiazo­les and triazoles, see: Huisgen, Sauer & Seidel (1960); Huisgen, Sturm & Markgraf (1960) and of triazolo-annulated azines, see: Preis et al. (2011).graphic file with name e-67-o2551-scheme1.jpg

Experimental

Crystal data

  • C12H9ClN4

  • M r = 244.68

  • Monoclinic, Inline graphic

  • a = 7.1001 (18) Å

  • b = 11.431 (3) Å

  • c = 13.783 (3) Å

  • β = 93.403 (6)°

  • V = 1116.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.60 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • 14031 measured reflections

  • 2664 independent reflections

  • 1226 reflections with I > 2σ(I)

  • R int = 0.130

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.132

  • S = 0.84

  • 2664 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035288/bt5632sup1.cif

e-67-o2551-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035288/bt5632Isup2.hkl

e-67-o2551-Isup2.hkl (130.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035288/bt5632Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N9i 0.95 2.55 3.344 (4) 141
C11—H11⋯N2 0.95 2.34 3.006 (4) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.

supplementary crystallographic information

Comment

The title compound was synthesized as part of a larger project focusing on the synthesis of higher conjugated and annulated heterocyclic π-systems (Detert & Schollmeyer, 1999; Sugiono & Detert, 2001). The acylation of tetrazoles followed by thermal ring transformation is a highly efficient route for the synthesis of 1,3,4-oxadiazoles and triazoles (Huisgen, Sauer & Seidel, 1960; Huisgen, Sturm & Markgraf, 1960) and can also be applied to 2-chloroazines to yield triazolo-annulated azines (Preis et al., 2011). In the crystal the title compound adopts an essentially planar structure with a dihedral angle of 2.21° between the mean planes of the phenyl ring and the bicyclic system and deviations of less than 0.01 Å from the least square plane. All torsion angles in the C—N-framework are below 2°; the torsion angle of -176.5 (3)° (C16—C12—C13—C14) results from methyl substitution. With 1.372 (3)Å (N2—N3) and 1.381 (3)Å (N8 - N9), the N—N bonds in the bicyclic framework are significantly longer than the C—N bonds C1—N2 (1.290 (4) Å), C4 - N9 (1.317 (4) Å), and C7 - N8 (1.324 (4) Å). This, the longer bonds N3—C4 (1.383 (4) Å) and N3 - C7 (1.378 (4) Å) and the alternating C—C bond lengths in the pyridazine (C4 - C5: 1.416 (4) Å; C5 - C6: 1.3435 (4) Å; C1 - C6: 1.426 (4) Å) indicate a strong localization of the double bonds. Contrary to the short bond C1 - N2 (1.290 (4) Å), the C1 - Cl1 bond (1.732 (3) Å) is long. This correlates with the reactivity of the C1—Cl1 bond, similar to an imidoyl chloride. Two molecules are connected via a center of inversion (symmetry operator: 1-x, 1-y, 1-z), by π-π-interactions and hydrogen bridging stabilize the lattice. The distances of the centroids of pyridazine and tolyl rings are only 3.70 Å and C—H—N bonds between C6—H6—N9 (H6—N9: 2.55 Å) connect the molecules.

Experimental

The title compound was prepared by adding pyridine (0.89 g, 10 mmol) to a solution of 3,6-dichloropyridazine (0.45 g, 3 mmol) and 5-(3-methyl- phenyl)tetrazole (0.96 g, 9 mmol) in toluene (15 ml). The mixture was heated to relflux for 5 h, cooled, filtered, and concentrated. The residue was purified by chromatography (SiO2 /toluene/ethyl acetate = 1/1, Rf = 0,23). The title compound was isolated as an off-white powder with m.p. = 422 - 425 K. Crystals were obtained by slow evaporation of a solution of the title compound in chloroform/hexanes.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H9ClN4 F(000) = 504
Mr = 244.68 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 1195 reflections
a = 7.1001 (18) Å θ = 2.3–20.2°
b = 11.431 (3) Å µ = 0.32 mm1
c = 13.783 (3) Å T = 173 K
β = 93.403 (6)° Needle, colourless
V = 1116.6 (5) Å3 0.60 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 1226 reflections with I > 2σ(I)
Radiation source: sealed Tube Rint = 0.130
graphite θmax = 27.9°, θmin = 2.3°
CCD scan h = −9→9
14031 measured reflections k = −15→14
2664 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
2664 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. 1H-NMR (300 MHz,CDCl3): 8.23 (m, 2 H, 2-H, 6-H, ph), 8.16 (d, 1 H, J = 9.6 Hz, 5-H pyr), 7.41 (t, 1 H, 5-H, ph), 7.32 (d, J = 8.2 Hz, 1 H. 4-H, ph), 7.13 (d, 1 H, J = 9.6 Hz, 4-H pyr), 2.52 (s, 3 H, CH3). 13C-NMR (75 MHz,CDCl3): 149.1 (Cq), 148.2 (Cq), 143.5 (Cq), 139.0 (Cq), 136.6 (Cq), 131.6 (CH), 128.7 (CH), 128.3 (CH), 126.6 (CH), 124.7 (CH), 122.0 (CH), 21.5 (CH3). FD-MS: 244.3 (M++, 100%, Cl-pattern).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.14497 (13) 0.12426 (7) 0.55906 (6) 0.0543 (3)
C1 0.1347 (4) 0.2284 (3) 0.4676 (2) 0.0351 (7)
N2 0.1881 (3) 0.3314 (2) 0.49595 (17) 0.0319 (6)
N3 0.1769 (3) 0.41168 (19) 0.42183 (16) 0.0300 (6)
C4 0.1166 (4) 0.3900 (3) 0.3262 (2) 0.0346 (7)
C5 0.0608 (4) 0.2744 (3) 0.3013 (2) 0.0374 (7)
H5 0.0189 0.2548 0.2366 0.045*
C6 0.0691 (4) 0.1934 (3) 0.3722 (2) 0.0373 (7)
H6 0.0321 0.1148 0.3590 0.045*
C7 0.2199 (4) 0.5292 (2) 0.4268 (2) 0.0349 (7)
N8 0.1856 (4) 0.5739 (2) 0.3389 (2) 0.0432 (7)
N9 0.1210 (4) 0.4874 (2) 0.27542 (18) 0.0432 (7)
C10 0.2901 (4) 0.5958 (2) 0.5118 (2) 0.0377 (7)
C11 0.3162 (4) 0.5480 (3) 0.6046 (2) 0.0416 (8)
H11 0.2890 0.4676 0.6143 0.050*
C12 0.3820 (4) 0.6163 (3) 0.6838 (3) 0.0462 (8)
C13 0.4225 (4) 0.7318 (3) 0.6691 (3) 0.0534 (10)
H13 0.4694 0.7782 0.7224 0.064*
C14 0.3961 (5) 0.7824 (3) 0.5778 (3) 0.0576 (11)
H14 0.4227 0.8630 0.5690 0.069*
C15 0.3300 (4) 0.7138 (3) 0.4989 (3) 0.0493 (9)
H15 0.3123 0.7479 0.4362 0.059*
C16 0.4006 (6) 0.5656 (3) 0.7827 (3) 0.0736 (12)
H16A 0.4618 0.4889 0.7802 0.110*
H16B 0.2752 0.5566 0.8079 0.110*
H16C 0.4771 0.6176 0.8256 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0708 (6) 0.0485 (5) 0.0425 (5) −0.0143 (4) −0.0053 (4) 0.0108 (4)
C1 0.0308 (16) 0.0411 (18) 0.0331 (19) −0.0015 (13) −0.0003 (14) 0.0048 (13)
N2 0.0285 (13) 0.0389 (14) 0.0279 (14) −0.0026 (11) −0.0009 (11) 0.0018 (10)
N3 0.0262 (13) 0.0361 (14) 0.0274 (14) −0.0001 (10) −0.0003 (10) −0.0025 (10)
C4 0.0278 (15) 0.0449 (18) 0.0308 (17) 0.0044 (13) 0.0007 (13) −0.0017 (14)
C5 0.0328 (17) 0.0533 (19) 0.0254 (17) −0.0003 (14) −0.0048 (14) −0.0088 (14)
C6 0.0326 (17) 0.0400 (18) 0.039 (2) −0.0066 (13) −0.0005 (14) −0.0060 (14)
C7 0.0285 (16) 0.0368 (17) 0.0395 (19) 0.0028 (13) 0.0039 (14) −0.0014 (13)
N8 0.0455 (16) 0.0393 (15) 0.0446 (17) 0.0024 (12) 0.0010 (13) 0.0038 (13)
N9 0.0479 (16) 0.0456 (16) 0.0356 (16) 0.0028 (13) −0.0004 (13) 0.0048 (12)
C10 0.0263 (16) 0.0366 (18) 0.051 (2) −0.0002 (13) 0.0081 (14) −0.0097 (14)
C11 0.0310 (17) 0.0449 (19) 0.049 (2) −0.0027 (14) 0.0000 (15) −0.0131 (15)
C12 0.0322 (17) 0.056 (2) 0.051 (2) −0.0002 (16) 0.0019 (15) −0.0142 (17)
C13 0.0346 (19) 0.060 (2) 0.066 (3) −0.0061 (16) 0.0072 (18) −0.024 (2)
C14 0.039 (2) 0.044 (2) 0.090 (3) −0.0096 (16) 0.013 (2) −0.018 (2)
C15 0.0389 (19) 0.045 (2) 0.064 (3) 0.0013 (15) 0.0091 (18) −0.0033 (17)
C16 0.073 (3) 0.080 (3) 0.065 (3) 0.004 (2) −0.012 (2) −0.018 (2)

Geometric parameters (Å, °)

Cl1—C1 1.732 (3) C10—C15 1.392 (4)
C1—N2 1.290 (4) C10—C11 1.393 (4)
C1—C6 1.426 (4) C11—C12 1.399 (4)
N2—N3 1.372 (3) C11—H11 0.9500
N3—C7 1.378 (4) C12—C13 1.369 (5)
N3—C4 1.383 (4) C12—C16 1.481 (5)
C4—N9 1.317 (4) C13—C14 1.387 (5)
C4—C5 1.416 (4) C13—H13 0.9500
C5—C6 1.345 (4) C14—C15 1.399 (5)
C5—H5 0.9500 C14—H14 0.9500
C6—H6 0.9500 C15—H15 0.9500
C7—N8 1.324 (4) C16—H16A 0.9800
C7—C10 1.460 (4) C16—H16B 0.9800
N8—N9 1.381 (3) C16—H16C 0.9800
N2—C1—C6 127.5 (3) C11—C10—C7 123.5 (3)
N2—C1—Cl1 114.0 (2) C10—C11—C12 121.1 (3)
C6—C1—Cl1 118.4 (2) C10—C11—H11 119.4
C1—N2—N3 112.4 (2) C12—C11—H11 119.4
N2—N3—C7 127.7 (2) C13—C12—C11 119.1 (3)
N2—N3—C4 126.2 (2) C13—C12—C16 120.4 (3)
C7—N3—C4 106.1 (2) C11—C12—C16 120.5 (3)
N9—C4—N3 109.8 (2) C12—C13—C14 121.1 (3)
N9—C4—C5 132.4 (3) C12—C13—H13 119.4
N3—C4—C5 117.7 (3) C14—C13—H13 119.4
C6—C5—C4 117.8 (3) C13—C14—C15 119.5 (3)
C6—C5—H5 121.1 C13—C14—H14 120.2
C4—C5—H5 121.1 C15—C14—H14 120.2
C5—C6—C1 118.3 (3) C10—C15—C14 120.3 (4)
C5—C6—H6 120.8 C10—C15—H15 119.8
C1—C6—H6 120.8 C14—C15—H15 119.8
N8—C7—N3 107.6 (3) C12—C16—H16A 109.5
N8—C7—C10 124.6 (3) C12—C16—H16B 109.5
N3—C7—C10 127.8 (3) H16A—C16—H16B 109.5
C7—N8—N9 109.8 (2) C12—C16—H16C 109.5
C4—N9—N8 106.6 (2) H16A—C16—H16C 109.5
C15—C10—C11 118.7 (3) H16B—C16—H16C 109.5
C15—C10—C7 117.7 (3)
C6—C1—N2—N3 −0.1 (4) C10—C7—N8—N9 179.9 (3)
Cl1—C1—N2—N3 −179.59 (18) N3—C4—N9—N8 0.1 (3)
C1—N2—N3—C7 179.0 (3) C5—C4—N9—N8 178.9 (3)
C1—N2—N3—C4 −0.1 (4) C7—N8—N9—C4 0.1 (3)
N2—N3—C4—N9 178.9 (2) N8—C7—C10—C15 −2.3 (4)
C7—N3—C4—N9 −0.3 (3) N3—C7—C10—C15 177.9 (3)
N2—N3—C4—C5 −0.0 (4) N8—C7—C10—C11 176.7 (3)
C7—N3—C4—C5 −179.3 (2) N3—C7—C10—C11 −3.1 (5)
N9—C4—C5—C6 −178.4 (3) C15—C10—C11—C12 −0.2 (4)
N3—C4—C5—C6 0.3 (4) C7—C10—C11—C12 −179.2 (3)
C4—C5—C6—C1 −0.5 (4) C10—C11—C12—C13 −0.5 (4)
N2—C1—C6—C5 0.4 (5) C10—C11—C12—C16 177.2 (3)
Cl1—C1—C6—C5 179.9 (2) C11—C12—C13—C14 1.2 (5)
N2—N3—C7—N8 −178.9 (2) C16—C12—C13—C14 −176.5 (3)
C4—N3—C7—N8 0.3 (3) C12—C13—C14—C15 −1.1 (5)
N2—N3—C7—C10 1.0 (4) C11—C10—C15—C14 0.4 (4)
C4—N3—C7—C10 −179.9 (3) C7—C10—C15—C14 179.4 (3)
N3—C7—N8—N9 −0.3 (3) C13—C14—C15—C10 0.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···N9i 0.95 2.55 3.344 (4) 141
C11—H11···N2 0.95 2.34 3.006 (4) 127
C15—H15···N8 0.95 2.53 2.864 (5) 101

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5632).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Boulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res. 21, 287–295.
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999–1004.
  5. Glang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th Ger. Top. Meet. Liq. Cryst. pp. 125–128.
  6. Huisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885–2891.
  7. Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106–2124.
  8. Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.
  9. Kozhevnikov, D. N., Kataeva, N. N. & Rusinov, V. L. (2005). Mendeleev. Commun. p. 31.
  10. Preis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035288/bt5632sup1.cif

e-67-o2551-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035288/bt5632Isup2.hkl

e-67-o2551-Isup2.hkl (130.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035288/bt5632Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES