Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1343. doi: 10.1107/S1600536811035690

(Acetyl­acetonato-κ2 O,O′)bis­[5-meth­oxy-2-(naphth[1,2-d][1,3]oxazol-2-yl)phenyl-κ2 C 1,N]iridium(III)

Song Li a, Guo-Jie Yin b,*, Shi-Min Wang c, Yuan-Yuan Zhou d
PMCID: PMC3201473  PMID: 22065644

Abstract

In the title compound, [Ir(C18H12NO2)2(C5H7O2)], the Ir atom is O,O′-chelated by the acetyl­acetonate group and C,N-chelated by the 2-aryl­naphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octa­hedral geometry. Intra­molecular C—H⋯O hydrogen bonds occur. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into columns parallel to the b axis.

Related literature

For the syntheses and reactions of some 2-aryl­naphth[1,2-d]oxazole derivatives, see: Abbady (1979). For the syntheses and characterization of phospho­rescent cyclo­metalated iridium complexes, see: Lamansky et al. (2001).graphic file with name e-67-m1343-scheme1.jpg

Experimental

Crystal data

  • [Ir(C18H12NO2)2(C5H7O2)]

  • M r = 839.88

  • Monoclinic, Inline graphic

  • a = 16.618 (3) Å

  • b = 11.455 (2) Å

  • c = 18.993 (4) Å

  • β = 114.01 (3)°

  • V = 3302.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.373, T max = 0.495

  • 40039 measured reflections

  • 7866 independent reflections

  • 7275 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.093

  • S = 1.04

  • 7866 reflections

  • 452 parameters

  • H-atom parameters not refined

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035690/rz2632sup1.cif

e-67-m1343-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035690/rz2632Isup2.hkl

e-67-m1343-Isup2.hkl (384.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ir1—C1 1.997 (4)
Ir1—C19 2.004 (4)
Ir1—N1 2.088 (3)
Ir1—N2 2.109 (3)
Ir1—O6 2.144 (3)
Ir1—O5 2.156 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O6 0.93 2.24 3.077 (5) 150
C33—H33A⋯O5 0.93 2.22 3.137 (6) 170
C23—H23A⋯O6i 0.93 2.54 3.419 (6) 157
C27—H27A⋯O2ii 0.93 2.55 3.206 (6) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

According to the study of Lamansky's group in 2001 (Lamansky et al., 2001), the luminous wavelength of complexes would change as the the conjugated system of (C—N) changed. Therefore, the arylnaphthoxazoles ligand was choosed to regulate luminous wavelength of phosphorescent materials, leading to get better electrophosphorescent materials.

The title complex is a mononuclear iridium(III) complex (Fig. 1), in which the environment around the IrIII ion is a distorted octahedral coordination geometry, the coordination conformation of the C, N and O atoms of the ligands adopt the cis-, trans- and cis- respectively, which is consistent with the similar reported complexes (Lamansky et al., 2001). It can be illustrated from the figure that the carbon-metal bond is formed between IrIII ion and the carbon atom on the benzene ring rather than the C atom on the naphthalene ring. It shows from Table 1 that the increase of the bond distance from Ir—C to Ir—N and Ir—O is caused by the increase of the covalent component between the coordination atoms from C to N and O of which the electronegativity decreases gradually. Moreover, there are two five-membered rings formed (Ir1/C1/C6/C7/N1 and Ir1/C19/C24/C25/N2), the average deviation of which are 0.0186 Å and 0.0387 Å, and the dihedral angle they form with their adjacent benzene rings (C1–C6) and (C19–C24) are 3.5 (2)° and 4.9 (3)° respectively. The dihedral angle with their adjacent oxazole heterocycle (N1/O1/C7–17) and (N2/O3/C25–35) are 9.0 (2)° and 8.0 (2)° respectively. The molecular comformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 2). In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link molecules into columns parallel to the b axis.

Experimental

The ligand 2-arylnaphth[1,2-d]oxazole was prepared according to the literature (Abbady, 1979). The ligand (0.61 g, 2.2 mmol) and IrCl3.3H2O (0.35 g, 1 mmol) were added to 20 ml 2-ethoxyethanol:H2O (3:1, v/v) solution under inert gas atmosphere at 393 K for 24 h, and then the intermediate product, acetylacetonate (10 ml) and Na2CO3 (1.06 g, 10 mmol) were refluxed for 12 h. After cooling to room temperature, the coloured precipitate was filtered and washed with ethanol and water. The crude product was flash chromatographed using a silica/dichloromethane column to yield ca. 40% of the pure title compound after solvent evaporation and drying.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H =0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

[Ir(C18H12NO2)2(C5H7O2)] F(000) = 1664
Mr = 839.88 Dx = 1.689 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 168 reflections
a = 16.618 (3) Å θ = 2.5–26.0°
b = 11.455 (2) Å µ = 4.10 mm1
c = 18.993 (4) Å T = 293 K
β = 114.01 (3)° Prismatic, yellow
V = 3302.5 (13) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area detector diffractometer 7866 independent reflections
Radiation source: fine-focus sealed tube 7275 reflections with I > 2σ(I)
graphite Rint = 0.042
phi and ω scans θmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −21→21
Tmin = 0.373, Tmax = 0.495 k = −15→14
40039 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters not refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.049P)2 + 2.9P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
7866 reflections Δρmax = 1.19 e Å3
452 parameters Δρmin = −0.79 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.000124

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.283405 (9) 0.883603 (13) 0.016855 (9) 0.03107 (8)
C1 0.2104 (2) 0.7556 (4) −0.0502 (2) 0.0333 (9)
C2 0.2356 (3) 0.6436 (4) −0.0595 (3) 0.0400 (10)
H2A 0.2948 0.6231 −0.0358 0.048*
C3 0.1744 (3) 0.5607 (4) −0.1037 (3) 0.0433 (10)
C4 0.0850 (3) 0.5876 (5) −0.1400 (3) 0.0497 (12)
H4A 0.0447 0.5323 −0.1701 0.060*
C5 0.0575 (3) 0.6967 (4) −0.1305 (3) 0.0485 (12)
H5A −0.0020 0.7160 −0.1540 0.058*
C6 0.1186 (3) 0.7791 (4) −0.0857 (3) 0.0390 (10)
C7 0.0990 (3) 0.8925 (4) −0.0681 (3) 0.0383 (10)
C8 0.0285 (3) 1.0503 (4) −0.0648 (3) 0.0442 (11)
C9 −0.0388 (4) 1.1294 (5) −0.0754 (3) 0.0572 (15)
H9A −0.0977 1.1110 −0.1038 0.069*
C10 −0.0131 (4) 1.2354 (5) −0.0418 (3) 0.0608 (15)
H10A −0.0560 1.2899 −0.0451 0.073*
C11 0.0772 (4) 1.2659 (5) −0.0016 (3) 0.0545 (13)
C12 0.1028 (5) 1.3789 (5) 0.0288 (4) 0.0690 (18)
H12A 0.0595 1.4319 0.0269 0.083*
C13 0.1882 (5) 1.4127 (5) 0.0608 (4) 0.0721 (18)
H13A 0.2030 1.4877 0.0806 0.086*
C14 0.2539 (4) 1.3346 (5) 0.0639 (3) 0.0636 (15)
H14A 0.3123 1.3592 0.0832 0.076*
C15 0.2333 (3) 1.2218 (4) 0.0388 (3) 0.0488 (11)
H15A 0.2782 1.1701 0.0430 0.059*
C16 0.1460 (3) 1.1836 (4) 0.0070 (3) 0.0457 (11)
C17 0.1165 (3) 1.0700 (4) −0.0234 (3) 0.0403 (10)
C18 0.1518 (4) 0.3653 (4) −0.1511 (4) 0.0623 (15)
H18A 0.1853 0.2965 −0.1497 0.093*
H18B 0.1201 0.3897 −0.2035 0.093*
H18C 0.1108 0.3484 −0.1285 0.093*
C19 0.3098 (2) 0.9591 (3) −0.0666 (2) 0.0326 (8)
C20 0.2626 (3) 1.0416 (4) −0.1207 (2) 0.0371 (9)
H20A 0.2070 1.0631 −0.1245 0.045*
C21 0.2958 (3) 1.0938 (4) −0.1699 (3) 0.0395 (10)
C22 0.3789 (3) 1.0652 (4) −0.1654 (3) 0.0437 (10)
H22A 0.4014 1.1023 −0.1970 0.052*
C23 0.4275 (3) 0.9816 (4) −0.1140 (3) 0.0423 (10)
H23A 0.4825 0.9599 −0.1115 0.051*
C24 0.3936 (3) 0.9294 (4) −0.0655 (2) 0.0353 (9)
C25 0.4352 (3) 0.8390 (4) −0.0116 (3) 0.0375 (9)
C26 0.5213 (3) 0.6961 (4) 0.0445 (3) 0.0434 (10)
C27 0.5894 (3) 0.6147 (5) 0.0656 (4) 0.0567 (14)
H27A 0.6318 0.6163 0.0453 0.068*
C28 0.5899 (3) 0.5331 (5) 0.1174 (3) 0.0580 (14)
H28A 0.6337 0.4763 0.1327 0.070*
C29 0.5257 (3) 0.5314 (4) 0.1492 (3) 0.0490 (12)
C30 0.5291 (4) 0.4462 (5) 0.2044 (3) 0.0586 (14)
H30A 0.5739 0.3908 0.2201 0.070*
C31 0.4684 (4) 0.4443 (5) 0.2344 (3) 0.0605 (14)
H31A 0.4715 0.3872 0.2702 0.073*
C32 0.4011 (4) 0.5264 (5) 0.2124 (3) 0.0610 (14)
H32A 0.3603 0.5246 0.2345 0.073*
C33 0.3941 (4) 0.6101 (4) 0.1586 (3) 0.0484 (12)
H33A 0.3479 0.6634 0.1435 0.058*
C34 0.4560 (3) 0.6157 (4) 0.1264 (3) 0.0406 (10)
C35 0.4572 (3) 0.7002 (4) 0.0720 (3) 0.0382 (9)
C36 0.2760 (4) 1.2488 (5) −0.2607 (3) 0.0625 (15)
H36A 0.2304 1.3002 −0.2933 0.094*
H36B 0.2972 1.2026 −0.2918 0.094*
H36C 0.3236 1.2941 −0.2248 0.094*
C37 0.2550 (4) 0.7829 (6) 0.2320 (3) 0.0692 (16)
H37A 0.2206 0.7168 0.2053 0.104*
H37B 0.2206 0.8310 0.2507 0.104*
H37C 0.3067 0.7564 0.2747 0.104*
C38 0.2818 (3) 0.8530 (5) 0.1775 (3) 0.0485 (12)
C39 0.3321 (4) 0.9528 (5) 0.2054 (3) 0.0566 (13)
H39A 0.3440 0.9733 0.2561 0.068*
C40 0.3666 (3) 1.0257 (4) 0.1659 (3) 0.0436 (11)
C41 0.4168 (4) 1.1320 (5) 0.2078 (4) 0.0654 (16)
H41A 0.4372 1.1748 0.1748 0.098*
H41B 0.4663 1.1081 0.2534 0.098*
H41C 0.3788 1.1809 0.2220 0.098*
O1 0.01686 (18) 0.9383 (3) −0.09431 (19) 0.0458 (8)
O2 0.2092 (2) 0.4554 (3) −0.1090 (2) 0.0568 (9)
O3 0.50843 (19) 0.7840 (3) −0.0083 (2) 0.0459 (8)
O4 0.2417 (2) 1.1741 (3) −0.2197 (2) 0.0554 (9)
O5 0.25520 (19) 0.8129 (3) 0.10959 (18) 0.0422 (7)
O6 0.35994 (18) 1.0133 (3) 0.09775 (18) 0.0402 (7)
N1 0.1604 (2) 0.9649 (3) −0.0240 (2) 0.0357 (8)
N2 0.4017 (2) 0.7958 (3) 0.0350 (2) 0.0332 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02440 (10) 0.03730 (12) 0.03357 (11) 0.00402 (6) 0.01390 (7) 0.00183 (6)
C1 0.0253 (19) 0.045 (2) 0.031 (2) 0.0023 (17) 0.0132 (16) 0.0050 (17)
C2 0.030 (2) 0.049 (3) 0.038 (2) 0.0034 (19) 0.0104 (18) 0.0009 (19)
C3 0.040 (2) 0.043 (3) 0.051 (3) 0.000 (2) 0.024 (2) −0.004 (2)
C4 0.036 (2) 0.052 (3) 0.055 (3) −0.005 (2) 0.013 (2) −0.010 (2)
C5 0.028 (2) 0.057 (3) 0.055 (3) 0.005 (2) 0.011 (2) 0.000 (2)
C6 0.029 (2) 0.046 (2) 0.041 (2) 0.0008 (18) 0.0132 (18) −0.0030 (19)
C7 0.026 (2) 0.050 (3) 0.040 (2) 0.0080 (17) 0.0146 (18) 0.0052 (19)
C8 0.035 (2) 0.056 (3) 0.047 (3) 0.014 (2) 0.023 (2) 0.012 (2)
C9 0.041 (3) 0.076 (4) 0.062 (3) 0.029 (3) 0.029 (3) 0.026 (3)
C10 0.062 (3) 0.062 (4) 0.074 (4) 0.032 (3) 0.043 (3) 0.020 (3)
C11 0.060 (3) 0.054 (3) 0.059 (3) 0.025 (3) 0.033 (3) 0.015 (2)
C12 0.087 (5) 0.050 (3) 0.075 (4) 0.031 (3) 0.038 (4) 0.009 (3)
C13 0.097 (5) 0.049 (3) 0.073 (4) 0.011 (3) 0.036 (4) 0.003 (3)
C14 0.075 (4) 0.046 (3) 0.064 (4) 0.009 (3) 0.023 (3) 0.004 (3)
C15 0.053 (3) 0.047 (3) 0.048 (3) 0.012 (2) 0.022 (2) 0.006 (2)
C16 0.052 (3) 0.049 (3) 0.043 (3) 0.015 (2) 0.026 (2) 0.011 (2)
C17 0.035 (2) 0.047 (3) 0.045 (3) 0.015 (2) 0.023 (2) 0.012 (2)
C18 0.065 (4) 0.045 (3) 0.076 (4) −0.002 (3) 0.028 (3) −0.009 (3)
C19 0.0285 (19) 0.035 (2) 0.037 (2) −0.0011 (16) 0.0169 (17) 0.0007 (17)
C20 0.037 (2) 0.040 (2) 0.039 (2) 0.0033 (18) 0.0199 (18) 0.0045 (18)
C21 0.048 (3) 0.039 (2) 0.033 (2) 0.0000 (19) 0.019 (2) −0.0004 (18)
C22 0.051 (3) 0.050 (3) 0.042 (3) −0.006 (2) 0.031 (2) −0.002 (2)
C23 0.037 (2) 0.051 (3) 0.047 (3) 0.001 (2) 0.025 (2) −0.001 (2)
C24 0.030 (2) 0.042 (2) 0.038 (2) 0.0003 (18) 0.0185 (18) −0.0013 (18)
C25 0.0275 (19) 0.043 (2) 0.043 (2) 0.0061 (18) 0.0157 (18) −0.0017 (19)
C26 0.033 (2) 0.047 (3) 0.051 (3) 0.0080 (19) 0.018 (2) 0.001 (2)
C27 0.039 (3) 0.069 (4) 0.066 (4) 0.020 (2) 0.025 (3) 0.007 (3)
C28 0.042 (3) 0.060 (3) 0.066 (4) 0.022 (2) 0.017 (3) 0.007 (3)
C29 0.046 (3) 0.046 (3) 0.046 (3) 0.012 (2) 0.010 (2) 0.001 (2)
C30 0.056 (3) 0.047 (3) 0.055 (3) 0.015 (2) 0.005 (3) 0.007 (2)
C31 0.076 (4) 0.046 (3) 0.051 (3) 0.004 (3) 0.018 (3) 0.006 (2)
C32 0.066 (3) 0.060 (3) 0.061 (4) −0.002 (3) 0.030 (3) 0.007 (3)
C33 0.049 (3) 0.047 (3) 0.052 (3) 0.003 (2) 0.023 (2) 0.002 (2)
C34 0.039 (2) 0.038 (2) 0.039 (2) 0.0028 (18) 0.010 (2) 0.0010 (18)
C35 0.027 (2) 0.044 (2) 0.040 (2) 0.0061 (18) 0.0105 (17) −0.0017 (19)
C36 0.089 (4) 0.058 (3) 0.049 (3) 0.006 (3) 0.037 (3) 0.015 (3)
C37 0.076 (4) 0.091 (4) 0.052 (3) 0.007 (3) 0.039 (3) 0.014 (3)
C38 0.042 (3) 0.066 (3) 0.044 (3) 0.020 (2) 0.024 (2) 0.009 (2)
C39 0.061 (3) 0.066 (3) 0.044 (3) 0.005 (3) 0.022 (2) −0.006 (2)
C40 0.034 (2) 0.050 (3) 0.042 (3) 0.010 (2) 0.0107 (19) −0.008 (2)
C41 0.060 (4) 0.063 (4) 0.065 (4) −0.001 (3) 0.017 (3) −0.016 (3)
O1 0.0278 (15) 0.058 (2) 0.0507 (19) 0.0074 (14) 0.0150 (14) 0.0050 (16)
O2 0.0469 (19) 0.0436 (19) 0.074 (3) 0.0006 (15) 0.0181 (18) −0.0136 (17)
O3 0.0318 (15) 0.057 (2) 0.056 (2) 0.0130 (14) 0.0247 (14) 0.0084 (16)
O4 0.059 (2) 0.055 (2) 0.057 (2) 0.0100 (17) 0.0291 (18) 0.0214 (17)
O5 0.0372 (16) 0.0557 (19) 0.0395 (17) 0.0050 (14) 0.0215 (14) 0.0086 (14)
O6 0.0296 (14) 0.0452 (17) 0.0457 (18) 0.0019 (13) 0.0151 (13) −0.0041 (14)
N1 0.0253 (16) 0.044 (2) 0.042 (2) 0.0092 (15) 0.0175 (15) 0.0079 (16)
N2 0.0238 (16) 0.0381 (19) 0.0375 (19) 0.0057 (14) 0.0125 (14) 0.0002 (15)

Geometric parameters (Å, °)

Ir1—C1 1.997 (4) C21—O4 1.364 (5)
Ir1—C19 2.004 (4) C21—C22 1.387 (6)
Ir1—N1 2.088 (3) C22—C23 1.371 (6)
Ir1—N2 2.109 (3) C22—H22A 0.9300
Ir1—O6 2.144 (3) C23—C24 1.393 (6)
Ir1—O5 2.156 (3) C23—H23A 0.9300
C1—C2 1.383 (6) C24—C25 1.423 (6)
C1—C6 1.420 (5) C25—N2 1.318 (5)
C2—C3 1.395 (6) C25—O3 1.348 (5)
C2—H2A 0.9300 C26—C35 1.365 (6)
C3—O2 1.359 (5) C26—O3 1.374 (6)
C3—C4 1.394 (6) C26—C27 1.393 (6)
C4—C5 1.367 (7) C27—C28 1.355 (8)
C4—H4A 0.9300 C27—H27A 0.9300
C5—C6 1.394 (6) C28—C29 1.426 (7)
C5—H5A 0.9300 C28—H28A 0.9300
C6—C7 1.413 (6) C29—C30 1.416 (7)
C7—N1 1.317 (6) C29—C34 1.433 (6)
C7—O1 1.354 (5) C30—C31 1.345 (8)
C8—C17 1.369 (6) C30—H30A 0.9300
C8—O1 1.382 (6) C31—C32 1.389 (8)
C8—C9 1.388 (6) C31—H31A 0.9300
C9—C10 1.356 (8) C32—C33 1.371 (7)
C9—H9A 0.9300 C32—H32A 0.9300
C10—C11 1.423 (8) C33—C34 1.397 (7)
C10—H10A 0.9300 C33—H33A 0.9300
C11—C12 1.410 (8) C34—C35 1.421 (6)
C11—C16 1.440 (6) C35—N2 1.420 (5)
C12—C13 1.354 (10) C36—O4 1.423 (6)
C12—H12A 0.9300 C36—H36A 0.9600
C13—C14 1.394 (9) C36—H36B 0.9600
C13—H13A 0.9300 C36—H36C 0.9600
C14—C15 1.371 (7) C37—C38 1.514 (7)
C14—H14A 0.9300 C37—H37A 0.9600
C15—C16 1.396 (7) C37—H37B 0.9600
C15—H15A 0.9300 C37—H37C 0.9600
C16—C17 1.427 (7) C38—O5 1.267 (6)
C17—N1 1.410 (5) C38—C39 1.388 (8)
C18—O2 1.412 (6) C39—C40 1.393 (7)
C18—H18A 0.9600 C39—H39A 0.9300
C18—H18B 0.9600 C40—O6 1.261 (5)
C18—H18C 0.9600 C40—C41 1.507 (7)
C19—C20 1.381 (6) C41—H41A 0.9600
C19—C24 1.426 (5) C41—H41B 0.9600
C20—C21 1.399 (6) C41—H41C 0.9600
C20—H20A 0.9300
C1—Ir1—C19 94.82 (16) C23—C22—C21 119.4 (4)
C1—Ir1—N1 80.88 (15) C23—C22—H22A 120.3
C19—Ir1—N1 90.57 (14) C21—C22—H22A 120.3
C1—Ir1—N2 92.18 (14) C22—C23—C24 119.4 (4)
C19—Ir1—N2 81.11 (15) C22—C23—H23A 120.3
N1—Ir1—N2 168.72 (13) C24—C23—H23A 120.3
C1—Ir1—O6 174.57 (14) C23—C24—C25 125.4 (4)
C19—Ir1—O6 90.60 (14) C23—C24—C19 122.9 (4)
N1—Ir1—O6 99.37 (13) C25—C24—C19 111.6 (4)
N2—Ir1—O6 88.39 (12) N2—C25—O3 114.4 (4)
C1—Ir1—O5 88.16 (14) N2—C25—C24 122.9 (4)
C19—Ir1—O5 176.47 (14) O3—C25—C24 122.6 (4)
N1—Ir1—O5 88.03 (12) C35—C26—O3 109.8 (4)
N2—Ir1—O5 100.70 (12) C35—C26—C27 125.6 (5)
O6—Ir1—O5 86.43 (12) O3—C26—C27 124.6 (4)
C2—C1—C6 116.0 (4) C28—C27—C26 115.8 (5)
C2—C1—Ir1 128.7 (3) C28—C27—H27A 122.1
C6—C1—Ir1 114.8 (3) C26—C27—H27A 122.1
C1—C2—C3 121.5 (4) C27—C28—C29 122.2 (5)
C1—C2—H2A 119.2 C27—C28—H28A 118.9
C3—C2—H2A 119.2 C29—C28—H28A 118.9
O2—C3—C4 124.0 (4) C30—C29—C28 120.8 (5)
O2—C3—C2 114.9 (4) C30—C29—C34 118.2 (5)
C4—C3—C2 121.1 (4) C28—C29—C34 121.0 (5)
C5—C4—C3 118.9 (5) C31—C30—C29 120.9 (5)
C5—C4—H4A 120.5 C31—C30—H30A 119.6
C3—C4—H4A 120.5 C29—C30—H30A 119.6
C4—C5—C6 119.9 (4) C30—C31—C32 120.9 (5)
C4—C5—H5A 120.0 C30—C31—H31A 119.6
C6—C5—H5A 120.0 C32—C31—H31A 119.6
C5—C6—C7 125.9 (4) C33—C32—C31 120.7 (6)
C5—C6—C1 122.5 (4) C33—C32—H32A 119.6
C7—C6—C1 111.7 (4) C31—C32—H32A 119.6
N1—C7—O1 113.2 (4) C32—C33—C34 120.3 (5)
N1—C7—C6 122.4 (4) C32—C33—H33A 119.8
O1—C7—C6 124.4 (4) C34—C33—H33A 119.8
C17—C8—O1 109.0 (4) C33—C34—C35 125.5 (4)
C17—C8—C9 125.8 (5) C33—C34—C29 119.0 (4)
O1—C8—C9 125.2 (5) C35—C34—C29 115.5 (4)
C10—C9—C8 115.8 (5) C26—C35—N2 106.7 (4)
C10—C9—H9A 122.1 C26—C35—C34 119.9 (4)
C8—C9—H9A 122.1 N2—C35—C34 133.4 (4)
C9—C10—C11 122.2 (5) O4—C36—H36A 109.5
C9—C10—H10A 118.9 O4—C36—H36B 109.5
C11—C10—H10A 118.9 H36A—C36—H36B 109.5
C12—C11—C10 121.4 (5) O4—C36—H36C 109.5
C12—C11—C16 117.5 (5) H36A—C36—H36C 109.5
C10—C11—C16 121.1 (5) H36B—C36—H36C 109.5
C13—C12—C11 122.2 (5) C38—C37—H37A 109.5
C13—C12—H12A 118.9 C38—C37—H37B 109.5
C11—C12—H12A 118.9 H37A—C37—H37B 109.5
C12—C13—C14 119.7 (6) C38—C37—H37C 109.5
C12—C13—H13A 120.1 H37A—C37—H37C 109.5
C14—C13—H13A 120.1 H37B—C37—H37C 109.5
C15—C14—C13 120.6 (6) O5—C38—C39 126.4 (5)
C15—C14—H14A 119.7 O5—C38—C37 115.2 (5)
C13—C14—H14A 119.7 C39—C38—C37 118.4 (5)
C14—C15—C16 121.0 (5) C38—C39—C40 127.2 (5)
C14—C15—H15A 119.5 C38—C39—H39A 116.4
C16—C15—H15A 119.5 C40—C39—H39A 116.4
C15—C16—C17 126.0 (4) O6—C40—C39 127.0 (5)
C15—C16—C11 118.8 (5) O6—C40—C41 115.6 (5)
C17—C16—C11 115.1 (4) C39—C40—C41 117.4 (5)
C8—C17—N1 106.9 (4) C40—C41—H41A 109.5
C8—C17—C16 119.6 (4) C40—C41—H41B 109.5
N1—C17—C16 133.5 (4) H41A—C41—H41B 109.5
O2—C18—H18A 109.5 C40—C41—H41C 109.5
O2—C18—H18B 109.5 H41A—C41—H41C 109.5
H18A—C18—H18B 109.5 H41B—C41—H41C 109.5
O2—C18—H18C 109.5 C7—O1—C8 104.9 (3)
H18A—C18—H18C 109.5 C3—O2—C18 118.7 (4)
H18B—C18—H18C 109.5 C25—O3—C26 104.3 (3)
C20—C19—C24 115.4 (4) C21—O4—C36 119.1 (4)
C20—C19—Ir1 130.0 (3) C38—O5—Ir1 126.4 (3)
C24—C19—Ir1 114.4 (3) C40—O6—Ir1 126.3 (3)
C19—C20—C21 122.0 (4) C7—N1—C17 105.9 (3)
C19—C20—H20A 119.0 C7—N1—Ir1 110.1 (3)
C21—C20—H20A 119.0 C17—N1—Ir1 144.0 (3)
O4—C21—C22 124.2 (4) C25—N2—C35 104.8 (3)
O4—C21—C20 115.1 (4) C25—N2—Ir1 109.4 (3)
C22—C21—C20 120.7 (4) C35—N2—Ir1 145.4 (3)
C19—Ir1—C1—C2 95.3 (4) C29—C30—C31—C32 −0.5 (9)
N1—Ir1—C1—C2 −174.9 (4) C30—C31—C32—C33 1.2 (9)
N2—Ir1—C1—C2 14.0 (4) C31—C32—C33—C34 −1.5 (8)
O5—Ir1—C1—C2 −86.6 (4) C32—C33—C34—C35 −178.1 (5)
C19—Ir1—C1—C6 −93.0 (3) C32—C33—C34—C29 1.2 (7)
N1—Ir1—C1—C6 −3.2 (3) C30—C29—C34—C33 −0.5 (7)
N2—Ir1—C1—C6 −174.2 (3) C28—C29—C34—C33 179.5 (5)
O5—Ir1—C1—C6 85.1 (3) C30—C29—C34—C35 178.8 (4)
C6—C1—C2—C3 2.4 (6) C28—C29—C34—C35 −1.1 (7)
Ir1—C1—C2—C3 174.1 (3) O3—C26—C35—N2 −0.4 (5)
C1—C2—C3—O2 178.6 (4) C27—C26—C35—N2 −179.7 (5)
C1—C2—C3—C4 −0.4 (7) O3—C26—C35—C34 178.6 (4)
O2—C3—C4—C5 −180.0 (5) C27—C26—C35—C34 −0.7 (8)
C2—C3—C4—C5 −1.2 (8) C33—C34—C35—C26 −179.8 (5)
C3—C4—C5—C6 0.4 (8) C29—C34—C35—C26 0.9 (6)
C4—C5—C6—C7 −176.7 (5) C33—C34—C35—N2 −1.1 (8)
C4—C5—C6—C1 1.8 (8) C29—C34—C35—N2 179.6 (4)
C2—C1—C6—C5 −3.2 (7) O5—C38—C39—C40 −3.1 (9)
Ir1—C1—C6—C5 −176.0 (4) C37—C38—C39—C40 176.8 (5)
C2—C1—C6—C7 175.6 (4) C38—C39—C40—O6 −1.4 (8)
Ir1—C1—C6—C7 2.7 (5) C38—C39—C40—C41 177.9 (5)
C5—C6—C7—N1 178.7 (5) N1—C7—O1—C8 1.0 (5)
C1—C6—C7—N1 0.1 (6) C6—C7—O1—C8 −178.7 (4)
C5—C6—C7—O1 −1.6 (8) C17—C8—O1—C7 1.4 (5)
C1—C6—C7—O1 179.7 (4) C9—C8—O1—C7 −178.4 (5)
C17—C8—C9—C10 0.6 (8) C4—C3—O2—C18 −2.7 (8)
O1—C8—C9—C10 −179.6 (5) C2—C3—O2—C18 178.5 (5)
C8—C9—C10—C11 3.2 (8) N2—C25—O3—C26 1.3 (5)
C9—C10—C11—C12 176.0 (6) C24—C25—O3—C26 −173.7 (4)
C9—C10—C11—C16 −1.7 (8) C35—C26—O3—C25 −0.5 (5)
C10—C11—C12—C13 −173.7 (6) C27—C26—O3—C25 178.8 (5)
C16—C11—C12—C13 4.1 (9) C22—C21—O4—C36 −11.5 (7)
C11—C12—C13—C14 0.3 (10) C20—C21—O4—C36 167.2 (4)
C12—C13—C14—C15 −3.6 (10) C39—C38—O5—Ir1 2.2 (7)
C13—C14—C15—C16 2.3 (9) C37—C38—O5—Ir1 −177.6 (3)
C14—C15—C16—C17 177.7 (5) C1—Ir1—O5—C38 −179.5 (4)
C14—C15—C16—C11 2.1 (7) N1—Ir1—O5—C38 −98.6 (4)
C12—C11—C16—C15 −5.2 (7) N2—Ir1—O5—C38 88.6 (4)
C10—C11—C16—C15 172.5 (5) O6—Ir1—O5—C38 1.0 (3)
C12—C11—C16—C17 178.8 (5) C39—C40—O6—Ir1 5.7 (6)
C10—C11—C16—C17 −3.5 (7) C41—C40—O6—Ir1 −173.6 (3)
O1—C8—C17—N1 −3.1 (5) C19—Ir1—O6—C40 173.3 (3)
C9—C8—C17—N1 176.7 (5) N1—Ir1—O6—C40 82.7 (3)
O1—C8—C17—C16 174.2 (4) N2—Ir1—O6—C40 −105.6 (3)
C9—C8—C17—C16 −6.0 (7) O5—Ir1—O6—C40 −4.7 (3)
C15—C16—C17—C8 −168.7 (5) O1—C7—N1—C17 −2.9 (5)
C11—C16—C17—C8 7.0 (6) C6—C7—N1—C17 176.8 (4)
C15—C16—C17—N1 7.8 (8) O1—C7—N1—Ir1 177.7 (3)
C11—C16—C17—N1 −176.5 (5) C6—C7—N1—Ir1 −2.6 (5)
C1—Ir1—C19—C20 87.0 (4) C8—C17—N1—C7 3.6 (5)
N1—Ir1—C19—C20 6.1 (4) C16—C17—N1—C7 −173.2 (5)
N2—Ir1—C19—C20 178.4 (4) C8—C17—N1—Ir1 −177.4 (4)
O6—Ir1—C19—C20 −93.3 (4) C16—C17—N1—Ir1 5.8 (9)
C1—Ir1—C19—C24 −98.6 (3) C1—Ir1—N1—C7 3.0 (3)
N1—Ir1—C19—C24 −179.5 (3) C19—Ir1—N1—C7 97.8 (3)
N2—Ir1—C19—C24 −7.1 (3) N2—Ir1—N1—C7 55.6 (8)
O6—Ir1—C19—C24 81.1 (3) O6—Ir1—N1—C7 −171.5 (3)
C24—C19—C20—C21 −1.2 (6) O5—Ir1—N1—C7 −85.4 (3)
Ir1—C19—C20—C21 173.2 (3) C1—Ir1—N1—C17 −175.9 (5)
C19—C20—C21—O4 −179.5 (4) C19—Ir1—N1—C17 −81.1 (5)
C19—C20—C21—C22 −0.8 (7) N2—Ir1—N1—C17 −123.4 (7)
O4—C21—C22—C23 −179.0 (4) O6—Ir1—N1—C17 9.6 (5)
C20—C21—C22—C23 2.4 (7) O5—Ir1—N1—C17 95.6 (5)
C21—C22—C23—C24 −1.9 (7) O3—C25—N2—C35 −1.5 (5)
C22—C23—C24—C25 177.6 (4) C24—C25—N2—C35 173.5 (4)
C22—C23—C24—C19 −0.1 (7) O3—C25—N2—Ir1 −176.0 (3)
C20—C19—C24—C23 1.7 (6) C24—C25—N2—Ir1 −1.1 (5)
Ir1—C19—C24—C23 −173.6 (4) C26—C35—N2—C25 1.1 (5)
C20—C19—C24—C25 −176.3 (4) C34—C35—N2—C25 −177.7 (5)
Ir1—C19—C24—C25 8.4 (5) C26—C35—N2—Ir1 172.0 (4)
C23—C24—C25—N2 177.4 (4) C34—C35—N2—Ir1 −6.8 (9)
C19—C24—C25—N2 −4.7 (6) C1—Ir1—N2—C25 99.0 (3)
C23—C24—C25—O3 −8.1 (7) C19—Ir1—N2—C25 4.5 (3)
C19—C24—C25—O3 169.8 (4) N1—Ir1—N2—C25 47.4 (8)
C35—C26—C27—C28 0.6 (8) O6—Ir1—N2—C25 −86.4 (3)
O3—C26—C27—C28 −178.6 (5) O5—Ir1—N2—C25 −172.5 (3)
C26—C27—C28—C29 −0.8 (8) C1—Ir1—N2—C35 −71.7 (5)
C27—C28—C29—C30 −178.8 (5) C19—Ir1—N2—C35 −166.3 (5)
C27—C28—C29—C34 1.2 (8) N1—Ir1—N2—C35 −123.4 (7)
C28—C29—C30—C31 −179.8 (5) O6—Ir1—N2—C35 102.9 (5)
C34—C29—C30—C31 0.2 (8) O5—Ir1—N2—C35 16.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O6 0.93 2.24 3.077 (5) 150
C33—H33A···O5 0.93 2.22 3.137 (6) 170
C23—H23A···O6i 0.93 2.54 3.419 (6) 157
C27—H27A···O2ii 0.93 2.55 3.206 (6) 128

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2632).

References

  1. Abbady, M. A. (1979). Indian J. Chem. Sect. B, 17, 450–453.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711. [DOI] [PubMed]
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035690/rz2632sup1.cif

e-67-m1343-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035690/rz2632Isup2.hkl

e-67-m1343-Isup2.hkl (384.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES