Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2752. doi: 10.1107/S1600536811038608

11α,15α-Dihy­droxy­androst-4-ene-3,17-dione

Yan-Bing Shen a, Min Wang a,*, Qi-Kun Liang a, Jian-Mei Luo a
PMCID: PMC3201477  PMID: 22058810

Abstract

The title compound, C19H26O4, was biotransformed from androstenedione. In the crystal, inter­molecular O—H⋯O hydrogen bonds link molecules into a corrugated sheet, which lies parallel to the ab plane. Ring A has a slightly distorted half-chair conformation, rings B and C adopt chair conformations, while the cyclo­pentane ring D adopts a 14α-envelope conformation.

Related literature

For related structures, see: Galdecki et al. (1990); Thamotharan et al. (2004); Vasuki et al. (2002). For details of biotransformation, see: Ahmad et al. (1992); Kollerov et al. (2008); Malaviya & Gomes (2008); Perez et al. (2006). For conformational analysis, see Cremer & Pople (1975).graphic file with name e-67-o2752-scheme1.jpg

Experimental

Crystal data

  • C19H26O4

  • M r = 318.40

  • Orthorhombic, Inline graphic

  • a = 7.8716 (8) Å

  • b = 12.2725 (12) Å

  • c = 17.2100 (16) Å

  • V = 1662.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn 724CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.981, T max = 0.990

  • 17662 measured reflections

  • 2275 independent reflections

  • 2050 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.081

  • S = 1.03

  • 2275 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038608/lw2070sup1.cif

e-67-o2752-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038608/lw2070Isup2.hkl

e-67-o2752-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.88 (3) 1.94 (3) 2.800 (2) 164 (3)
O2—H2⋯O1ii 0.81 (3) 1.95 (3) 2.7600 (19) 180 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21076158), the Program for New Century Excellent Talents in Universities (No. NCET-08–0911) and the Foundation for Excellent Doctoral Dissertations of Tianjin University of Science and Technology in 2010 (No. B201001).

supplementary crystallographic information

Comment

Androst-4-ene-3,17-dione (AD) is the important intermediate in the pharmaceutical industry (Perez et al., 2006; Kollerov et al. 2008). The production of several high value steroid drugs is mostly derived from key compounds such as AD by chemical synthesis (Ahmad et al., 1992; Malaviya & Gomes, 2008).

The structure of the title compound is depicted in Fig. 1. The 11α,15α-dihydroxy-androstenedione has three six-membered rings (A/B/C) and one five-membered rings (D). Ring A has a slightly distorted half-chair conformation. Rings B and C adopt chair conformations, while the cyclopentane ring D adopts a 14α-envelope conformation. The torsion angle C8—C9—C11—O2 = 162.83 (13), indicates that the 11-hydroxy has an α configuration. The 15-hydroxy has an α configuration with the torsion angle C13—C14—C15—O3 = -160.83 (14)°. The bond lengths and angles are within normal ranges (Thamotharan et al., 2004; Vasuki, et al., 2002; Galdecki et al., 1990).

Two types of intermolecular hydrogen bonds contribute to the formation of a two-dimensional corrugated sheet lying parallel to the ab-plane, Figure 2. The O3 hydroxyl hydrogen forms a hydrogen bond to hydroxyl atom O2 at (1-x,y,z) by unit translation along the a-axis. Hydroxyl oxygen O2 forms a hydrogen bond to the screw-related carbonyl atom O1 at (1-x,-1/2+y,1/2-z), Table 1.

Experimental

Experimental

Reagents: Colletotrichum lini AS3. 4486 was obtained from Institute of Microbiology, Chinese Academy of Sciences and maintained on Potato Dextrose Agar at 4°C. Androst-4-en-3,17-dione was obtained from Tianjin Pharmaceutical Company.

Cultures Protocol: Colletotrichum lini AS3. 4486 was cultivated in shake flasks in two consecutive cultivation steps: 72 h for seed culture and 24 h for cell cultivation. Seed medium comprised glucose 30 g/L, corn steep liquor 10 g/L and tap water (pH 7.0). Cell cultivation medium comprised glucose 3 g/L, corn steep liquor 10 g/L, soy meal 10 g/L, NaNO3 2 g/L, KH2PO4, 1 g/L, K2HPO4, 2 g/L, MgSO4.7H2O 0.5g/L, KCl, 0.5g/L, FeSO4.7H2O, 0.02 g/L, (pH 7.0). Cells were grown in 250 ml shake flasks containing 50 ml culture medium on a rotary shaker (200 r/min) at 25°C using 10% (v/v) of the seed culture as inoculum.

Biotransformation: 50 mg of the androst-4-en-3,17-dione dissolved in 1 ml of ethanol was added to the culture after 24 h for growth and the reaction was allowed to proceed for 72 h. The mycelium was then removed by filtration.

Separation and purification: The biomass and the broth were extracted separately with EtOAc. All extracts were combined and dried (anhydr. MgSO4). The solvents after filtration were evaporated under reduced pressure. The crude extracts were purified by Si gel column using dichloromethane/ether/methanol (25:2:1, v/v/v). The white powder was diffused with n-hexane/acetone at room temperature. Colorless prismatic crystals suitable for X-ray analysis were obtained.

Refinement

In the absence of significant anomalous dispersion effects, Freidel pairs were merged. All H atoms of O—H were initially located in a difference Fourier map and were refined with the restraints O—H bond lengths ranging 0.81 (3)–0.88 (3). O—H = 0.81 - 0.99 Å. Other H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 - 1.00Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The absolute configuration was assumed since the structure of the commercially obtained androst-4-en-3,17-dione used in the preparation was known.

Figures

Fig. 1.

Fig. 1.

A view of (I) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the packing of the title compound

Crystal data

C19H26O4 Dx = 1.272 Mg m3
Mr = 318.40 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 6101 reflections
a = 7.8716 (8) Å θ = 2.0–28.0°
b = 12.2725 (12) Å µ = 0.09 mm1
c = 17.2100 (16) Å T = 113 K
V = 1662.6 (3) Å3 Prism, colourless
Z = 4 0.22 × 0.18 × 0.12 mm
F(000) = 688

Data collection

Rigaku Saturn 724CCD diffractometer 2275 independent reflections
Radiation source: rotating anode 2050 reflections with I > 2σ(I)
multilayer Rint = 0.047
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 2.0°
ω scans h = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −14→16
Tmin = 0.981, Tmax = 0.990 l = −21→22
17662 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3
2275 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. Rigaku CrystalClear-SM Expert 2.0 r2
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.31267 (17) 0.53408 (9) 0.26929 (8) 0.0327 (3)
O2 0.51158 (16) 0.08691 (11) 0.09715 (8) 0.0284 (3)
H2 0.563 (3) 0.0711 (19) 0.1363 (15) 0.056 (8)*
O3 −0.27423 (18) 0.05176 (12) −0.03028 (8) 0.0328 (3)
H3 −0.357 (4) 0.064 (2) 0.0029 (16) 0.071 (9)*
O4 0.16087 (19) −0.21111 (10) −0.06034 (7) 0.0349 (4)
C1 0.4080 (2) 0.26310 (14) 0.19535 (12) 0.0286 (4)
H1A 0.4888 0.2042 0.2087 0.034*
H1B 0.4428 0.2935 0.1445 0.034*
C2 0.4205 (2) 0.35273 (15) 0.25684 (12) 0.0309 (4)
H2A 0.4037 0.3203 0.3089 0.037*
H2B 0.5357 0.3850 0.2553 0.037*
C3 0.2921 (2) 0.44021 (14) 0.24442 (10) 0.0238 (4)
C4 0.1357 (2) 0.40863 (14) 0.20623 (10) 0.0232 (4)
H4 0.0535 0.4636 0.1964 0.028*
C5 0.1002 (2) 0.30692 (13) 0.18408 (10) 0.0214 (4)
C6 −0.0777 (2) 0.28022 (15) 0.15829 (11) 0.0299 (4)
H6A −0.1398 0.3489 0.1482 0.036*
H6B −0.1371 0.2415 0.2008 0.036*
C7 −0.0825 (2) 0.21006 (14) 0.08549 (11) 0.0267 (4)
H7A −0.0385 0.2522 0.0408 0.032*
H7B −0.2012 0.1890 0.0740 0.032*
C8 0.0253 (2) 0.10785 (13) 0.09697 (10) 0.0202 (4)
H8 −0.0158 0.0696 0.1447 0.024*
C9 0.2132 (2) 0.14340 (14) 0.11087 (9) 0.0185 (3)
H9 0.2434 0.1930 0.0669 0.022*
C10 0.2289 (2) 0.21395 (13) 0.18739 (10) 0.0205 (4)
C11 0.3406 (2) 0.04730 (14) 0.10728 (10) 0.0213 (4)
H11 0.3346 0.0064 0.1575 0.026*
C12 0.3116 (2) −0.03257 (14) 0.04087 (10) 0.0236 (4)
H12A 0.3401 0.0030 −0.0091 0.028*
H12B 0.3875 −0.0963 0.0474 0.028*
C13 0.1278 (2) −0.07058 (13) 0.03913 (9) 0.0212 (4)
C14 0.0122 (2) 0.02890 (13) 0.02873 (9) 0.0216 (4)
H14 0.0545 0.0688 −0.0181 0.026*
C15 −0.1598 (2) −0.02117 (14) 0.00633 (10) 0.0257 (4)
H15 −0.2147 −0.0537 0.0533 0.031*
C16 −0.1069 (3) −0.11229 (16) −0.05010 (11) 0.0328 (5)
H16A −0.1820 −0.1765 −0.0440 0.039*
H16B −0.1139 −0.0866 −0.1045 0.039*
C17 0.0746 (2) −0.14129 (15) −0.02929 (10) 0.0262 (4)
C18 0.0840 (2) −0.13973 (14) 0.11174 (9) 0.0256 (4)
H18A −0.0316 −0.1685 0.1067 0.038*
H18B 0.0913 −0.0940 0.1583 0.038*
H18C 0.1645 −0.2003 0.1161 0.038*
C19 0.1869 (3) 0.14572 (15) 0.26033 (10) 0.0325 (5)
H19A 0.2029 0.1905 0.3069 0.049*
H19B 0.2625 0.0824 0.2627 0.049*
H19C 0.0686 0.1210 0.2577 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0360 (8) 0.0215 (6) 0.0407 (8) −0.0023 (6) −0.0052 (6) −0.0074 (6)
O2 0.0162 (6) 0.0369 (7) 0.0322 (7) 0.0014 (6) −0.0021 (6) −0.0035 (6)
O3 0.0253 (7) 0.0453 (8) 0.0277 (7) 0.0002 (7) −0.0082 (6) 0.0004 (6)
O4 0.0415 (9) 0.0337 (7) 0.0296 (7) −0.0005 (7) 0.0077 (6) −0.0113 (6)
C1 0.0193 (9) 0.0242 (10) 0.0422 (11) 0.0024 (8) −0.0062 (8) −0.0097 (8)
C2 0.0246 (9) 0.0266 (9) 0.0414 (11) −0.0001 (8) −0.0094 (9) −0.0079 (9)
C3 0.0274 (9) 0.0224 (8) 0.0217 (8) −0.0033 (8) 0.0029 (7) −0.0018 (7)
C4 0.0235 (9) 0.0214 (9) 0.0246 (8) 0.0046 (7) 0.0005 (7) −0.0006 (7)
C5 0.0210 (9) 0.0227 (9) 0.0206 (8) −0.0002 (7) 0.0018 (7) −0.0007 (7)
C6 0.0181 (9) 0.0265 (9) 0.0452 (11) 0.0025 (8) −0.0018 (8) −0.0105 (9)
C7 0.0187 (9) 0.0256 (9) 0.0357 (10) 0.0004 (8) −0.0058 (8) −0.0030 (8)
C8 0.0158 (8) 0.0217 (8) 0.0233 (8) −0.0014 (7) −0.0008 (7) −0.0004 (7)
C9 0.0162 (8) 0.0193 (8) 0.0201 (8) 0.0001 (7) −0.0008 (6) 0.0020 (7)
C10 0.0206 (9) 0.0189 (8) 0.0221 (8) −0.0005 (7) −0.0024 (7) −0.0004 (7)
C11 0.0169 (8) 0.0233 (8) 0.0238 (8) 0.0007 (7) −0.0006 (7) 0.0007 (7)
C12 0.0219 (9) 0.0248 (9) 0.0243 (8) 0.0023 (8) 0.0022 (7) −0.0041 (7)
C13 0.0233 (9) 0.0219 (9) 0.0186 (8) −0.0019 (7) 0.0027 (7) −0.0048 (7)
C14 0.0184 (8) 0.0253 (9) 0.0212 (8) −0.0024 (7) 0.0005 (7) 0.0001 (7)
C15 0.0223 (9) 0.0315 (10) 0.0234 (9) −0.0038 (8) −0.0026 (7) −0.0024 (8)
C16 0.0302 (10) 0.0405 (11) 0.0275 (9) −0.0075 (9) 0.0003 (8) −0.0099 (9)
C17 0.0311 (10) 0.0269 (9) 0.0206 (8) −0.0068 (9) 0.0063 (8) −0.0026 (8)
C18 0.0323 (10) 0.0219 (8) 0.0225 (8) 0.0027 (8) 0.0041 (8) −0.0014 (7)
C19 0.0553 (13) 0.0225 (8) 0.0197 (8) −0.0005 (10) −0.0029 (9) −0.0007 (8)

Geometric parameters (Å, °)

O1—C3 1.240 (2) C8—H8 1.0000
O2—C11 1.442 (2) C9—C11 1.549 (2)
O2—H2 0.81 (3) C9—C10 1.581 (2)
O3—C15 1.417 (2) C9—H9 1.0000
O3—H3 0.88 (3) C10—C19 1.545 (2)
O4—C17 1.217 (2) C11—C12 1.523 (2)
C1—C2 1.530 (2) C11—H11 1.0000
C1—C10 1.539 (2) C12—C13 1.521 (2)
C1—H1A 0.9900 C12—H12A 0.9900
C1—H1B 0.9900 C12—H12B 0.9900
C2—C3 1.490 (2) C13—C17 1.521 (2)
C2—H2A 0.9900 C13—C14 1.533 (2)
C2—H2B 0.9900 C13—C18 1.549 (2)
C3—C4 1.449 (2) C14—C15 1.536 (2)
C4—C5 1.335 (2) C14—H14 1.0000
C4—H4 0.9500 C15—C16 1.539 (2)
C5—C6 1.505 (2) C15—H15 1.0000
C5—C10 1.527 (2) C16—C17 1.515 (3)
C6—C7 1.521 (2) C16—H16A 0.9900
C6—H6A 0.9900 C16—H16B 0.9900
C6—H6B 0.9900 C18—H18A 0.9800
C7—C8 1.527 (2) C18—H18B 0.9800
C7—H7A 0.9900 C18—H18C 0.9800
C7—H7B 0.9900 C19—H19A 0.9800
C8—C14 1.526 (2) C19—H19B 0.9800
C8—C9 1.561 (2) C19—H19C 0.9800
C11—O2—H2 106.5 (18) C19—C10—C9 111.30 (12)
C15—O3—H3 107.0 (18) O2—C11—C12 105.43 (13)
C2—C1—C10 113.73 (15) O2—C11—C9 110.63 (13)
C2—C1—H1A 108.8 C12—C11—C9 115.02 (13)
C10—C1—H1A 108.8 O2—C11—H11 108.5
C2—C1—H1B 108.8 C12—C11—H11 108.5
C10—C1—H1B 108.8 C9—C11—H11 108.5
H1A—C1—H1B 107.7 C13—C12—C11 110.77 (14)
C3—C2—C1 112.03 (15) C13—C12—H12A 109.5
C3—C2—H2A 109.2 C11—C12—H12A 109.5
C1—C2—H2A 109.2 C13—C12—H12B 109.5
C3—C2—H2B 109.2 C11—C12—H12B 109.5
C1—C2—H2B 109.2 H12A—C12—H12B 108.1
H2A—C2—H2B 107.9 C12—C13—C17 116.88 (14)
O1—C3—C4 121.08 (17) C12—C13—C14 108.82 (13)
O1—C3—C2 122.11 (16) C17—C13—C14 101.58 (13)
C4—C3—C2 116.67 (14) C12—C13—C18 111.33 (15)
C5—C4—C3 123.90 (17) C17—C13—C18 104.51 (13)
C5—C4—H4 118.0 C14—C13—C18 113.48 (14)
C3—C4—H4 118.0 C8—C14—C13 112.07 (13)
C4—C5—C6 118.85 (16) C8—C14—C15 120.43 (14)
C4—C5—C10 123.31 (16) C13—C14—C15 103.52 (13)
C6—C5—C10 117.76 (14) C8—C14—H14 106.7
C5—C6—C7 112.89 (15) C13—C14—H14 106.7
C5—C6—H6A 109.0 C15—C14—H14 106.7
C7—C6—H6A 109.0 O3—C15—C14 114.78 (14)
C5—C6—H6B 109.0 O3—C15—C16 110.50 (15)
C7—C6—H6B 109.0 C14—C15—C16 102.16 (15)
H6A—C6—H6B 107.8 O3—C15—H15 109.7
C6—C7—C8 110.18 (14) C14—C15—H15 109.7
C6—C7—H7A 109.6 C16—C15—H15 109.7
C8—C7—H7A 109.6 C17—C16—C15 106.06 (15)
C6—C7—H7B 109.6 C17—C16—H16A 110.5
C8—C7—H7B 109.6 C15—C16—H16A 110.5
H7A—C7—H7B 108.1 C17—C16—H16B 110.5
C14—C8—C7 112.61 (13) C15—C16—H16B 110.5
C14—C8—C9 111.06 (13) H16A—C16—H16B 108.7
C7—C8—C9 108.46 (13) O4—C17—C16 126.00 (17)
C14—C8—H8 108.2 O4—C17—C13 126.01 (18)
C7—C8—H8 108.2 C16—C17—C13 107.96 (15)
C9—C8—H8 108.2 C13—C18—H18A 109.5
C11—C9—C8 113.24 (13) C13—C18—H18B 109.5
C11—C9—C10 113.54 (12) H18A—C18—H18B 109.5
C8—C9—C10 110.80 (13) C13—C18—H18C 109.5
C11—C9—H9 106.2 H18A—C18—H18C 109.5
C8—C9—H9 106.2 H18B—C18—H18C 109.5
C10—C9—H9 106.2 C10—C19—H19A 109.5
C5—C10—C1 108.55 (13) C10—C19—H19B 109.5
C5—C10—C19 107.05 (14) H19A—C19—H19B 109.5
C1—C10—C19 109.65 (15) C10—C19—H19C 109.5
C5—C10—C9 109.03 (13) H19A—C19—H19C 109.5
C1—C10—C9 111.13 (14) H19B—C19—H19C 109.5
C10—C1—C2—C3 −53.7 (2) C10—C9—C11—O2 −69.69 (17)
C1—C2—C3—O1 −155.82 (17) C8—C9—C11—C12 43.52 (19)
C1—C2—C3—C4 28.3 (2) C10—C9—C11—C12 171.00 (14)
O1—C3—C4—C5 −174.15 (17) O2—C11—C12—C13 −173.29 (13)
C2—C3—C4—C5 1.8 (3) C9—C11—C12—C13 −51.13 (19)
C3—C4—C5—C6 169.05 (16) C11—C12—C13—C17 173.62 (14)
C3—C4—C5—C10 −7.7 (3) C11—C12—C13—C14 59.39 (18)
C4—C5—C6—C7 136.19 (17) C11—C12—C13—C18 −66.41 (17)
C10—C5—C6—C7 −46.9 (2) C7—C8—C14—C13 177.14 (14)
C5—C6—C7—C8 53.8 (2) C9—C8—C14—C13 55.28 (18)
C6—C7—C8—C14 174.60 (14) C7—C8—C14—C15 −60.8 (2)
C6—C7—C8—C9 −62.07 (19) C9—C8—C14—C15 177.33 (15)
C14—C8—C9—C11 −44.45 (18) C12—C13—C14—C8 −63.21 (17)
C7—C8—C9—C11 −168.71 (14) C17—C13—C14—C8 172.92 (14)
C14—C8—C9—C10 −173.35 (13) C18—C13—C14—C8 61.33 (18)
C7—C8—C9—C10 62.39 (17) C12—C13—C14—C15 165.52 (14)
C4—C5—C10—C1 −16.8 (2) C17—C13—C14—C15 41.65 (16)
C6—C5—C10—C1 166.38 (16) C18—C13—C14—C15 −69.93 (17)
C4—C5—C10—C19 101.45 (19) C8—C14—C15—O3 73.1 (2)
C6—C5—C10—C19 −75.32 (18) C13—C14—C15—O3 −160.83 (14)
C4—C5—C10—C9 −138.03 (16) C8—C14—C15—C16 −167.34 (15)
C6—C5—C10—C9 45.2 (2) C13—C14—C15—C16 −41.22 (17)
C2—C1—C10—C5 46.6 (2) O3—C15—C16—C17 147.08 (15)
C2—C1—C10—C19 −70.07 (19) C14—C15—C16—C17 24.51 (18)
C2—C1—C10—C9 166.46 (14) C15—C16—C17—O4 179.09 (17)
C11—C9—C10—C5 179.05 (13) C15—C16—C17—C13 1.08 (18)
C8—C9—C10—C5 −52.21 (17) C12—C13—C17—O4 37.5 (2)
C11—C9—C10—C1 59.44 (18) C14—C13—C17—O4 155.76 (17)
C8—C9—C10—C1 −171.82 (14) C18—C13—C17—O4 −86.0 (2)
C11—C9—C10—C19 −63.08 (18) C12—C13—C17—C16 −144.46 (16)
C8—C9—C10—C19 65.66 (18) C14—C13—C17—C16 −26.23 (17)
C8—C9—C11—O2 162.83 (13) C18—C13—C17—C16 92.00 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.88 (3) 1.94 (3) 2.800 (2) 164 (3)
O2—H2···O1ii 0.81 (3) 1.95 (3) 2.7600 (19) 180 (3)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2070).

References

  1. Ahmad, S., Garg, S. K. & Johri, B. N. (1992). Biotechnol. Adv. 10, 1–67. [DOI] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Galdecki, Z., Grochulski, P. & Wawrzak, Z. (1990). J. Cryst. Spectrosc. 20, 425–428.
  4. Kollerov, V. V., Shutov, A. A., Fokina, V. V., Sukhodolskaya, G. V. & Donova, M. V. (2008). J. Mol. Catal. B Enzym. 55, 61–68.
  5. Malaviya, A. & Gomes, J. (2008). Bioresource Technol. 99, 6725–6737. [DOI] [PubMed]
  6. Perez, C., Falero, A., Luu Duc, H., Balcinde, Y. & Hung, B. R. (2006). J. Ind. Microbiol. Biotechnol. 148, 719–723. [DOI] [PubMed]
  7. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Thamotharan, S., Parthasarathi, V., Dubey, S., Jindal, D. P. & Linden, A. (2004). Acta Cryst. C60, o110–o112. [DOI] [PubMed]
  10. Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. & Jindal, D. P. (2002). Acta Cryst. E58, o1359–o1360. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038608/lw2070sup1.cif

e-67-o2752-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038608/lw2070Isup2.hkl

e-67-o2752-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES