Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2577. doi: 10.1107/S1600536811035859

(E)-N-(Anthracen-9-yl­methyl­idene)-4-nitro­aniline

K Geetha a,*, D K Andrew Prasanna Kumar b, D Lakshmanan c, R Savitha a, S Murugavel d,*
PMCID: PMC3201478  PMID: 22058743

Abstract

In the title molecule, C21H14N2O2, the anthracenyl system is approximately planar [maximum deviation = 0.056 (4) Å] and is oriented at a dihedral angle of 73.6 (1)° with respect to the benzene ring. An intra­molecular C—H⋯N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H⋯π and π–π inter­actions [centroid–centroid distances of 3.688 (2), 3.656 (1) and 3.716 (2) Å].

Related literature

For applications of anthracene derivatives, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Arumugam et al. (2011); Villalpando et al. (2010).graphic file with name e-67-o2577-scheme1.jpg

Experimental

Crystal data

  • C21H14N2O2

  • M r = 326.34

  • Triclinic, Inline graphic

  • a = 8.3634 (4) Å

  • b = 8.9045 (4) Å

  • c = 11.5119 (6) Å

  • α = 75.235 (2)°

  • β = 84.544 (3)°

  • γ = 75.054 (2)°

  • V = 800.56 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004) T min = 0.924, T max = 0.991

  • 15391 measured reflections

  • 2983 independent reflections

  • 1870 reflections with I > 2σ(I)

  • R int = 0.151

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.306

  • S = 1.12

  • 2983 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035859/im2315sup1.cif

e-67-o2577-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035859/im2315Isup2.hkl

e-67-o2577-Isup2.hkl (146.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1 0.93 2.37 2.980 (4) 123
C20—H20⋯Cg1i 0.93 2.86 3.717 (3) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

SM and KG thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Anthracene is an attractive material in its photochemical and electrochemical properties and is used as a potential medium for photoconductive (de Silva et al., 1997) and electroluminescence (Klarner et al., 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han et al., 2009). Against this background and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The anthracene moiety (C1-C14) is essentially planar [maximum deviation = -0.056 (4) Å for the C11 atom] and shows a dihedral angle of 73.6 (1)° with respect to the (C16-C21) benzene ring. The nitro group is slightly twisted away from the plane of the attached benzene ring [C20-C19-N2-O1 = -4.9 (5) ° and C18-C19-N2-O2 = -6.7 (5) °]. The geometric parameters of the title molecule agrees well with those reported for similar structures (Arumugam et al., 2011, Villalpando et al., 2010).

In addition to van der Waals interactions, the crystal packing is stabilized by C-H···N and C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular C12-H12···N1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between H20 and the neighbouring C1-C6 benzene ring, with a C20-H20···Cg1i separation of 2.86 Å (Fig. 2, Table 1; Cg1 is the centroid of the C1-C6 benzene ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with Cg1···Cg3ii, Cg2···Cg2ii and Cg2···Cg3ii separations of 3.688 (2) Å, 3.656 (1) Å and 3.716 (2) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring,C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively, symmetry code as in Fig. 2).

Experimental

Equimolar amounts of p-nitroaniline and 9-anthracenecarboxaldehyde were suspended in ethanol at a concentration of 0.1 M and the reaction mixture was refluxed overnight under vigorous stirring. Afterwards the mixture was cooled down and filtered. Recrystallization of the crude product from hexane : CHCl3 (1 : 1) yielded orange crystals of title compound (Yield 74 %).

Refinement

All H atoms were positioned geometrically, with C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.

Fig. 2.

Fig. 2.

Intramolecular C-H···O, C-H···π and π-π interactions (dotted lines) in the title compound. Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring, C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively. [Symmetry code: (i) 1-x, -y, 2-z; (ii) 1-x, -y, 1-z.]

Crystal data

C21H14N2O2 Z = 2
Mr = 326.34 F(000) = 340
Triclinic, P1 Dx = 1.354 Mg m3
Hall symbol: -P1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3634 (4) Å Cell parameters from 5007 reflections
b = 8.9045 (4) Å θ = 2.5–25.3°
c = 11.5119 (6) Å µ = 0.09 mm1
α = 75.235 (2)° T = 293 K
β = 84.544 (3)° Flat, orange
γ = 75.054 (2)° 0.30 × 0.20 × 0.10 mm
V = 800.56 (7) Å3

Data collection

Bruker APEXII diffractometer 2983 independent reflections
Radiation source: fine-focus sealed tube 1870 reflections with I > 2σ(I)
graphite Rint = 0.151
ω and φ scan θmax = 25.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker 2004) h = −10→10
Tmin = 0.924, Tmax = 0.991 k = −10→10
15391 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
2983 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4268 (3) −0.1323 (3) 0.7152 (2) 0.0507 (7)
C2 0.5139 (4) −0.2566 (4) 0.8071 (2) 0.0622 (8)
H2 0.5912 −0.2354 0.8498 0.075*
C3 0.4872 (4) −0.4052 (4) 0.8341 (3) 0.0725 (9)
H3 0.5463 −0.4840 0.8950 0.087*
C4 0.3730 (4) −0.4430 (4) 0.7726 (3) 0.0746 (10)
H4 0.3553 −0.5455 0.7936 0.090*
C5 0.2885 (4) −0.3314 (4) 0.6829 (3) 0.0673 (9)
H5 0.2134 −0.3579 0.6417 0.081*
C6 0.3125 (3) −0.1725 (3) 0.6501 (2) 0.0532 (7)
C7 0.2314 (3) −0.0591 (3) 0.5551 (2) 0.0549 (8)
H7 0.1599 −0.0875 0.5121 0.066*
C8 0.2524 (3) 0.0973 (3) 0.5211 (2) 0.0498 (7)
C9 0.1657 (3) 0.2116 (4) 0.4241 (2) 0.0621 (8)
H9 0.0979 0.1808 0.3798 0.075*
C10 0.1794 (4) 0.3636 (4) 0.3950 (3) 0.0703 (9)
H10 0.1211 0.4375 0.3312 0.084*
C11 0.2830 (4) 0.4104 (4) 0.4619 (3) 0.0675 (9)
H11 0.2904 0.5164 0.4427 0.081*
C12 0.3710 (3) 0.3050 (3) 0.5525 (2) 0.0588 (8)
H12 0.4395 0.3393 0.5939 0.071*
C13 0.3618 (3) 0.1421 (3) 0.5868 (2) 0.0487 (7)
C14 0.4501 (3) 0.0265 (3) 0.6825 (2) 0.0479 (7)
C15 0.5698 (3) 0.0602 (4) 0.7521 (3) 0.0584 (8)
H15 0.5835 0.0005 0.8311 0.070*
C16 0.7666 (3) 0.1767 (3) 0.7942 (2) 0.0553 (8)
C17 0.9203 (4) 0.1906 (4) 0.7470 (3) 0.0687 (9)
H17 0.9467 0.1877 0.6672 0.082*
C18 1.0355 (4) 0.2085 (4) 0.8158 (3) 0.0695 (9)
H18 1.1407 0.2147 0.7841 0.083*
C19 0.9936 (3) 0.2169 (3) 0.9316 (2) 0.0561 (8)
C20 0.8419 (3) 0.2054 (4) 0.9826 (2) 0.0597 (8)
H20 0.8168 0.2105 1.0622 0.072*
C21 0.7263 (3) 0.1859 (3) 0.9128 (2) 0.0589 (8)
H21 0.6214 0.1791 0.9451 0.071*
N1 0.6547 (3) 0.1602 (3) 0.7163 (2) 0.0647 (7)
N2 1.1188 (4) 0.2349 (4) 1.0045 (3) 0.0823 (9)
O1 1.0791 (4) 0.2499 (5) 1.1057 (3) 0.1296 (12)
O2 1.2591 (3) 0.2269 (4) 0.9629 (2) 0.1103 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0442 (15) 0.0651 (17) 0.0434 (14) −0.0129 (12) 0.0062 (11) −0.0174 (12)
C2 0.0615 (18) 0.076 (2) 0.0457 (15) −0.0128 (14) −0.0012 (13) −0.0120 (13)
C3 0.087 (2) 0.070 (2) 0.0511 (17) −0.0134 (17) 0.0044 (16) −0.0059 (14)
C4 0.094 (3) 0.0552 (19) 0.073 (2) −0.0245 (17) 0.0155 (18) −0.0117 (15)
C5 0.0660 (19) 0.073 (2) 0.0698 (19) −0.0249 (15) 0.0068 (15) −0.0235 (16)
C6 0.0498 (16) 0.0619 (18) 0.0498 (15) −0.0148 (13) 0.0074 (12) −0.0187 (12)
C7 0.0490 (16) 0.0723 (19) 0.0503 (15) −0.0204 (13) −0.0009 (12) −0.0218 (13)
C8 0.0412 (14) 0.0648 (17) 0.0423 (14) −0.0115 (12) 0.0031 (11) −0.0139 (12)
C9 0.0511 (17) 0.084 (2) 0.0502 (16) −0.0143 (14) −0.0074 (13) −0.0139 (14)
C10 0.0645 (19) 0.076 (2) 0.0576 (18) −0.0116 (15) −0.0089 (15) 0.0030 (15)
C11 0.068 (2) 0.0588 (18) 0.0694 (19) −0.0151 (15) −0.0038 (15) −0.0043 (14)
C12 0.0550 (17) 0.0650 (19) 0.0568 (17) −0.0172 (13) −0.0026 (13) −0.0125 (13)
C13 0.0416 (14) 0.0623 (17) 0.0439 (14) −0.0133 (12) 0.0062 (11) −0.0176 (12)
C14 0.0405 (14) 0.0615 (17) 0.0428 (14) −0.0133 (11) 0.0018 (11) −0.0145 (12)
C15 0.0498 (16) 0.0717 (19) 0.0539 (16) −0.0151 (14) −0.0036 (12) −0.0143 (13)
C16 0.0581 (17) 0.0556 (16) 0.0545 (16) −0.0139 (12) −0.0105 (13) −0.0144 (12)
C17 0.0637 (19) 0.092 (2) 0.0553 (17) −0.0213 (16) 0.0017 (14) −0.0260 (15)
C18 0.0506 (17) 0.093 (2) 0.0633 (19) −0.0197 (15) 0.0002 (14) −0.0130 (15)
C19 0.0501 (16) 0.0639 (18) 0.0532 (16) −0.0140 (13) −0.0131 (13) −0.0079 (12)
C20 0.0564 (18) 0.0771 (19) 0.0485 (15) −0.0161 (14) −0.0053 (13) −0.0191 (13)
C21 0.0469 (15) 0.073 (2) 0.0600 (17) −0.0187 (13) 0.0002 (13) −0.0191 (14)
N1 0.0692 (16) 0.0745 (17) 0.0572 (14) −0.0250 (13) −0.0087 (12) −0.0182 (12)
N2 0.068 (2) 0.113 (2) 0.0676 (18) −0.0334 (16) −0.0227 (15) −0.0059 (16)
O1 0.100 (2) 0.225 (4) 0.093 (2) −0.056 (2) −0.0209 (17) −0.069 (2)
O2 0.0675 (17) 0.169 (3) 0.097 (2) −0.0584 (17) −0.0212 (15) 0.0007 (17)

Geometric parameters (Å, °)

C1—C2 1.418 (4) C11—H11 0.9300
C1—C14 1.428 (4) C12—C13 1.423 (4)
C1—C6 1.432 (4) C12—H12 0.9300
C2—C3 1.352 (4) C13—C14 1.415 (4)
C2—H2 0.9300 C14—C15 1.471 (4)
C3—C4 1.394 (5) C15—N1 1.245 (3)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.344 (5) C16—C17 1.370 (4)
C4—H4 0.9300 C16—C21 1.393 (4)
C5—C6 1.430 (4) C16—N1 1.414 (3)
C5—H5 0.9300 C17—C18 1.367 (4)
C6—C7 1.379 (4) C17—H17 0.9300
C7—C8 1.399 (4) C18—C19 1.361 (4)
C7—H7 0.9300 C18—H18 0.9300
C8—C9 1.415 (4) C19—C20 1.364 (4)
C8—C13 1.430 (4) C19—N2 1.466 (4)
C9—C10 1.341 (4) C20—C21 1.385 (4)
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.412 (4) C21—H21 0.9300
C10—H10 0.9300 N2—O1 1.212 (4)
C11—C12 1.342 (4) N2—O2 1.216 (4)
C2—C1—C14 123.9 (2) C11—C12—H12 119.2
C2—C1—C6 117.0 (2) C13—C12—H12 119.2
C14—C1—C6 119.0 (2) C14—C13—C12 124.0 (2)
C3—C2—C1 121.4 (3) C14—C13—C8 119.4 (2)
C3—C2—H2 119.3 C12—C13—C8 116.6 (2)
C1—C2—H2 119.3 C13—C14—C1 120.3 (2)
C2—C3—C4 121.5 (3) C13—C14—C15 123.2 (2)
C2—C3—H3 119.3 C1—C14—C15 116.5 (2)
C4—C3—H3 119.3 N1—C15—C14 126.8 (3)
C5—C4—C3 120.1 (3) N1—C15—H15 116.6
C5—C4—H4 119.9 C14—C15—H15 116.6
C3—C4—H4 119.9 C17—C16—C21 119.2 (2)
C4—C5—C6 120.8 (3) C17—C16—N1 117.1 (2)
C4—C5—H5 119.6 C21—C16—N1 123.6 (2)
C6—C5—H5 119.6 C18—C17—C16 120.9 (3)
C7—C6—C5 121.2 (3) C18—C17—H17 119.6
C7—C6—C1 119.6 (2) C16—C17—H17 119.6
C5—C6—C1 119.2 (3) C19—C18—C17 118.9 (3)
C6—C7—C8 122.5 (2) C19—C18—H18 120.5
C6—C7—H7 118.8 C17—C18—H18 120.5
C8—C7—H7 118.8 C18—C19—C20 122.6 (3)
C7—C8—C9 121.2 (2) C18—C19—N2 118.3 (3)
C7—C8—C13 119.1 (2) C20—C19—N2 119.1 (3)
C9—C8—C13 119.7 (2) C19—C20—C21 118.2 (3)
C10—C9—C8 121.3 (3) C19—C20—H20 120.9
C10—C9—H9 119.3 C21—C20—H20 120.9
C8—C9—H9 119.3 C20—C21—C16 120.1 (3)
C9—C10—C11 119.4 (3) C20—C21—H21 119.9
C9—C10—H10 120.3 C16—C21—H21 119.9
C11—C10—H10 120.3 C15—N1—C16 120.0 (2)
C12—C11—C10 121.4 (3) O1—N2—O2 123.0 (3)
C12—C11—H11 119.3 O1—N2—C19 118.2 (3)
C10—C11—H11 119.3 O2—N2—C19 118.7 (3)
C11—C12—C13 121.6 (3)
C14—C1—C2—C3 −179.8 (2) C8—C13—C14—C1 −1.7 (4)
C6—C1—C2—C3 −1.6 (4) C12—C13—C14—C15 −4.1 (4)
C1—C2—C3—C4 0.1 (5) C8—C13—C14—C15 177.7 (2)
C2—C3—C4—C5 1.1 (5) C2—C1—C14—C13 177.9 (2)
C3—C4—C5—C6 −0.7 (5) C6—C1—C14—C13 −0.2 (4)
C4—C5—C6—C7 177.4 (3) C2—C1—C14—C15 −1.5 (4)
C4—C5—C6—C1 −0.8 (4) C6—C1—C14—C15 −179.6 (2)
C2—C1—C6—C7 −176.3 (2) C13—C14—C15—N1 −28.3 (4)
C14—C1—C6—C7 2.0 (4) C1—C14—C15—N1 151.1 (3)
C2—C1—C6—C5 2.0 (4) C21—C16—C17—C18 2.0 (5)
C14—C1—C6—C5 −179.8 (2) N1—C16—C17—C18 179.4 (3)
C5—C6—C7—C8 179.9 (2) C16—C17—C18—C19 −1.8 (5)
C1—C6—C7—C8 −1.8 (4) C17—C18—C19—C20 1.2 (5)
C6—C7—C8—C9 −179.2 (2) C17—C18—C19—N2 179.6 (3)
C6—C7—C8—C13 0.0 (4) C18—C19—C20—C21 −0.7 (5)
C7—C8—C9—C10 176.7 (3) N2—C19—C20—C21 −179.0 (2)
C13—C8—C9—C10 −2.4 (4) C19—C20—C21—C16 0.8 (4)
C8—C9—C10—C11 0.4 (4) C17—C16—C21—C20 −1.4 (4)
C9—C10—C11—C12 1.4 (5) N1—C16—C21—C20 −178.6 (2)
C10—C11—C12—C13 −1.1 (5) C14—C15—N1—C16 −179.1 (2)
C11—C12—C13—C14 −179.2 (2) C17—C16—N1—C15 136.4 (3)
C11—C12—C13—C8 −1.0 (4) C21—C16—N1—C15 −46.3 (4)
C7—C8—C13—C14 1.8 (4) C18—C19—N2—O1 176.6 (3)
C9—C8—C13—C14 −179.0 (2) C20—C19—N2—O1 −4.9 (5)
C7—C8—C13—C12 −176.5 (2) C18—C19—N2—O2 −6.7 (5)
C9—C8—C13—C12 2.7 (4) C20—C19—N2—O2 171.8 (3)
C12—C13—C14—C1 176.5 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.
D—H···A D—H H···A D···A D—H···A
C12—H12···N1 0.93 2.37 2.980 (4) 123
C20—H20···Cg1i 0.93 2.86 3.717 (3) 154

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2315).

References

  1. Arumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2004). APEX2, SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680. [DOI] [PMC free article] [PubMed]
  6. Klarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993–997.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Silva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891–7892.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Villalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035859/im2315sup1.cif

e-67-o2577-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035859/im2315Isup2.hkl

e-67-o2577-Isup2.hkl (146.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES