Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2670. doi: 10.1107/S1600536811037020

4-[2-(4-Chloro­phen­yl)hydrazinyl­idene]-3-methyl-1H-pyrazol-5(4H)-one

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3201479  PMID: 22058782

Abstract

In the title compound, C10H9ClN4O, the pyrazole ring [maximum deviation = 0.014 (2) Å] forms a dihedral angle of 7.06 (14)° with the chloro­benzene ring. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(16) ring motifs. The dimers are further connected by N—H⋯N hydrogen bonds, thereby forming layers lying parallel to the bc plane.

Related literature

For general background to and applications of pyrazole derivatives, see: Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For standard bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2670-scheme1.jpg

Experimental

Crystal data

  • C10H9ClN4O

  • M r = 236.66

  • Monoclinic, Inline graphic

  • a = 15.8496 (5) Å

  • b = 3.8184 (1) Å

  • c = 20.3794 (6) Å

  • β = 123.575 (2)°

  • V = 1027.59 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.55 × 0.06 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.829, T max = 0.984

  • 11013 measured reflections

  • 3048 independent reflections

  • 2213 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.135

  • S = 1.08

  • 3048 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037020/hb6405sup1.cif

e-67-o2670-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037020/hb6405Isup2.hkl

e-67-o2670-Isup2.hkl (149.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037020/hb6405Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.93 (3) 2.15 (3) 2.841 (3) 131 (3)
N3—H1N3⋯N4i 0.87 (3) 2.16 (3) 2.983 (3) 158 (3)
C5—H5A⋯O1ii 0.95 2.47 3.334 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Pyrazole are nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their various applications and widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing a pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Furthermore, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003).

In the title molecule, Fig. 1, the pyrazole ring (N3/N4/C7-C9, maximum deviation of 0.014 (2) Å at atom N3) forms a dihedral angle of 7.06 (14)° with the phenyl ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular N1–H1N1···O1 hydrogen bond, which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal, Fig. 2, the intermolecular C5–H5A···O1 hydrogen bonds (Table 1) form the inversion dimers producing sixteen-membered ring motifs R22(16) (Bernstein et al., 1995). Another intermolecular N3–H1N3···N4 hydrogen bond connects these dimers to another molecule forming two-dimensional layers parallel to bc plane.

Experimental

To a solution of ethyl-(2-[2-(4-chlorophenyl)hydrazinylidene]-3-oxobutanoate (0.01 mol) dissolved in glacial acetic acid (20 ml), a solution of hydrazine hydrate (0.02 mol) in glacial acetic acid (25 ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated was filtered and dried. It was then recrystallized from ethanol. Yellow needles were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

Atoms H1N1 and H3N3 were located from the difference Fourier map and refined freely [N–H = 0.87 (3) and 0.92 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C10H9ClN4O F(000) = 488
Mr = 236.66 Dx = 1.530 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3778 reflections
a = 15.8496 (5) Å θ = 3.5–30.2°
b = 3.8184 (1) Å µ = 0.35 mm1
c = 20.3794 (6) Å T = 100 K
β = 123.575 (2)° Needle, yellow
V = 1027.59 (5) Å3 0.55 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3048 independent reflections
Radiation source: fine-focus sealed tube 2213 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 30.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −22→22
Tmin = 0.829, Tmax = 0.984 k = −5→5
11013 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.3049P] where P = (Fo2 + 2Fc2)/3
3048 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.53838 (4) 0.43205 (18) 0.09622 (3) 0.01992 (17)
O1 1.00665 (12) 0.1519 (5) 0.58137 (9) 0.0189 (4)
N1 0.81975 (15) 0.0862 (6) 0.43307 (10) 0.0142 (4)
N2 0.78635 (14) −0.0814 (6) 0.47044 (11) 0.0142 (4)
N3 0.98057 (15) −0.1246 (6) 0.67129 (11) 0.0161 (4)
N4 0.90051 (14) −0.2933 (6) 0.66973 (11) 0.0159 (4)
C1 0.65048 (16) 0.0676 (7) 0.31307 (13) 0.0146 (5)
H1A 0.6261 −0.0518 0.3403 0.018*
C2 0.58548 (17) 0.1447 (7) 0.23340 (13) 0.0155 (5)
H2A 0.5166 0.0740 0.2054 0.019*
C3 0.62202 (17) 0.3249 (7) 0.19539 (12) 0.0142 (5)
C4 0.72266 (17) 0.4294 (7) 0.23485 (13) 0.0157 (5)
H4A 0.7465 0.5551 0.2079 0.019*
C5 0.78795 (17) 0.3479 (6) 0.31411 (13) 0.0140 (5)
H5A 0.8571 0.4155 0.3418 0.017*
C6 0.75154 (17) 0.1671 (6) 0.35249 (12) 0.0135 (5)
C7 0.85040 (16) −0.1370 (6) 0.54667 (12) 0.0131 (5)
C8 0.95460 (17) −0.0130 (6) 0.59853 (12) 0.0140 (5)
C9 0.82387 (17) −0.3049 (7) 0.59611 (13) 0.0138 (5)
C10 0.72429 (17) −0.4604 (7) 0.57061 (14) 0.0171 (5)
H10A 0.7304 −0.5904 0.6145 0.026*
H10B 0.7027 −0.6200 0.5264 0.026*
H10C 0.6741 −0.2735 0.5541 0.026*
H1N1 0.887 (2) 0.154 (8) 0.4584 (16) 0.020 (7)*
H1N3 1.029 (2) −0.044 (9) 0.7166 (19) 0.033 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0212 (3) 0.0260 (3) 0.0096 (2) 0.0014 (3) 0.0067 (2) 0.0042 (2)
O1 0.0180 (8) 0.0234 (10) 0.0183 (8) −0.0028 (7) 0.0120 (7) −0.0005 (8)
N1 0.0153 (9) 0.0189 (10) 0.0096 (8) −0.0012 (8) 0.0075 (7) 0.0008 (8)
N2 0.0189 (9) 0.0149 (9) 0.0122 (8) 0.0010 (8) 0.0107 (7) −0.0007 (8)
N3 0.0148 (9) 0.0236 (11) 0.0100 (8) −0.0009 (8) 0.0070 (8) −0.0018 (8)
N4 0.0182 (9) 0.0203 (11) 0.0130 (8) 0.0026 (8) 0.0110 (8) 0.0009 (8)
C1 0.0163 (11) 0.0162 (11) 0.0143 (10) −0.0002 (9) 0.0104 (9) 0.0008 (10)
C2 0.0163 (11) 0.0170 (12) 0.0144 (10) 0.0000 (9) 0.0093 (9) −0.0021 (10)
C3 0.0179 (11) 0.0164 (11) 0.0068 (9) 0.0034 (9) 0.0059 (8) 0.0001 (9)
C4 0.0223 (11) 0.0152 (11) 0.0141 (10) 0.0007 (10) 0.0129 (9) 0.0011 (10)
C5 0.0156 (11) 0.0142 (11) 0.0138 (10) −0.0005 (9) 0.0091 (9) −0.0026 (9)
C6 0.0185 (11) 0.0137 (11) 0.0096 (9) 0.0017 (9) 0.0085 (8) −0.0013 (9)
C7 0.0135 (10) 0.0164 (12) 0.0106 (9) 0.0009 (9) 0.0075 (8) −0.0012 (9)
C8 0.0160 (11) 0.0159 (12) 0.0120 (9) 0.0015 (9) 0.0088 (8) −0.0019 (9)
C9 0.0184 (11) 0.0132 (11) 0.0136 (10) 0.0026 (9) 0.0111 (9) 0.0013 (9)
C10 0.0201 (11) 0.0171 (12) 0.0182 (10) 0.0006 (10) 0.0131 (9) 0.0017 (10)

Geometric parameters (Å, °)

Cl1—C3 1.745 (2) C2—C3 1.380 (3)
O1—C8 1.232 (3) C2—H2A 0.9500
N1—N2 1.310 (3) C3—C4 1.390 (3)
N1—C6 1.413 (3) C4—C5 1.389 (3)
N1—H1N1 0.92 (3) C4—H4A 0.9500
N2—C7 1.321 (3) C5—C6 1.386 (3)
N3—C8 1.369 (3) C5—H5A 0.9500
N3—N4 1.407 (3) C7—C9 1.439 (3)
N3—H1N3 0.87 (3) C7—C8 1.462 (3)
N4—C9 1.309 (3) C9—C10 1.486 (3)
C1—C6 1.390 (3) C10—H10A 0.9800
C1—C2 1.391 (3) C10—H10B 0.9800
C1—H1A 0.9500 C10—H10C 0.9800
N2—N1—C6 119.14 (19) C6—C5—H5A 120.2
N2—N1—H1N1 121.3 (17) C4—C5—H5A 120.2
C6—N1—H1N1 119.5 (17) C5—C6—C1 121.1 (2)
N1—N2—C7 117.88 (19) C5—C6—N1 118.4 (2)
C8—N3—N4 113.00 (18) C1—C6—N1 120.6 (2)
C8—N3—H1N3 127 (2) N2—C7—C9 124.3 (2)
N4—N3—H1N3 116 (2) N2—C7—C8 128.6 (2)
C9—N4—N3 107.15 (19) C9—C7—C8 106.78 (18)
C6—C1—C2 119.3 (2) O1—C8—N3 128.2 (2)
C6—C1—H1A 120.3 O1—C8—C7 128.8 (2)
C2—C1—H1A 120.3 N3—C8—C7 102.99 (19)
C3—C2—C1 119.4 (2) N4—C9—C7 110.0 (2)
C3—C2—H2A 120.3 N4—C9—C10 123.2 (2)
C1—C2—H2A 120.3 C7—C9—C10 126.8 (2)
C2—C3—C4 121.5 (2) C9—C10—H10A 109.5
C2—C3—Cl1 118.75 (17) C9—C10—H10B 109.5
C4—C3—Cl1 119.76 (18) H10A—C10—H10B 109.5
C5—C4—C3 119.2 (2) C9—C10—H10C 109.5
C5—C4—H4A 120.4 H10A—C10—H10C 109.5
C3—C4—H4A 120.4 H10B—C10—H10C 109.5
C6—C5—C4 119.5 (2)
C6—N1—N2—C7 −176.4 (2) N1—N2—C7—C9 177.5 (2)
C8—N3—N4—C9 2.5 (3) N1—N2—C7—C8 5.1 (4)
C6—C1—C2—C3 −1.4 (4) N4—N3—C8—O1 177.3 (2)
C1—C2—C3—C4 0.4 (4) N4—N3—C8—C7 −2.6 (3)
C1—C2—C3—Cl1 −177.90 (19) N2—C7—C8—O1 −4.7 (4)
C2—C3—C4—C5 0.5 (4) C9—C7—C8—O1 −178.2 (2)
Cl1—C3—C4—C5 178.85 (19) N2—C7—C8—N3 175.2 (2)
C3—C4—C5—C6 −0.6 (4) C9—C7—C8—N3 1.8 (3)
C4—C5—C6—C1 −0.4 (4) N3—N4—C9—C7 −1.2 (3)
C4—C5—C6—N1 179.7 (2) N3—N4—C9—C10 −179.2 (2)
C2—C1—C6—C5 1.4 (4) N2—C7—C9—N4 −174.2 (2)
C2—C1—C6—N1 −178.8 (2) C8—C7—C9—N4 −0.4 (3)
N2—N1—C6—C5 179.3 (2) N2—C7—C9—C10 3.7 (4)
N2—N1—C6—C1 −0.6 (3) C8—C7—C9—C10 177.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1 0.93 (3) 2.15 (3) 2.841 (3) 131 (3)
N3—H1N3···N4i 0.87 (3) 2.16 (3) 2.983 (3) 158 (3)
C5—H5A···O1ii 0.95 2.47 3.334 (3) 151

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6405).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037020/hb6405sup1.cif

e-67-o2670-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037020/hb6405Isup2.hkl

e-67-o2670-Isup2.hkl (149.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037020/hb6405Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES