Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2610. doi: 10.1107/S1600536811036452

2-(6-Phenyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-3-yl)-1,3-benzothia­zole

Hatem A Abdel-Aziz a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201480  PMID: 22058756

Abstract

In the title compound, C17H11N5S2, the dihedral angles formed between the triazole ring and the benzene ring and the 1,3-benzothia­zole ring system are 8.67 (8) and 13.90 (9)°, respectively. The conformation of the triazolo-thia­diazin-3-yl fused ring system is a twisted half-chair. Overall, the mol­ecule adopts a flattened shape. Supra­molecular helical chains along the a axis sustained by C—H⋯N inter­actions are found in the crystal structure. These are linked via C—H⋯π contacts as well as π–π [centroid–centroid distance = 3.5911 (12) Å] inter­actions between the triazole and thia­zole rings.

Related literature

For background to the synthesis and biological activity of benzothia­zoles and [1,2,4]triazolo[3,4-b][1,3,4]thia­diazines, see: Abdel-Aziz et al. (2007, 2010); Dawood et al. (2005).graphic file with name e-67-o2610-scheme1.jpg

Experimental

Crystal data

  • C17H11N5S2

  • M r = 349.43

  • Orthorhombic, Inline graphic

  • a = 12.1437 (3) Å

  • b = 21.2950 (5) Å

  • c = 5.7946 (1) Å

  • V = 1498.48 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.29 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.715, T max = 1.000

  • 5754 measured reflections

  • 2902 independent reflections

  • 2751 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.083

  • S = 1.06

  • 2902 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1150 Friedel pairs

  • Flack parameter: −0.006 (16)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036452/hg5092sup1.cif

e-67-o2610-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036452/hg5092Isup2.hkl

e-67-o2610-Isup2.hkl (142.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036452/hg5092Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10a⋯N3i 0.99 2.45 3.333 (3) 148
C3—H3⋯Cg1ii 0.95 2.65 3.377 (2) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank King Saud University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound, (I), was investigated in relation to the established biological activities exhibited by benzothiazoles and [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (Abdel-Aziz et al. 2007; Abdel-Aziz et al. 2010; Dawood et al. 2005).

In (I), Fig. 1, the 1,3-benzothiazole ring is planar with r.m.s. deviations of 0.034 Å. By contrast, the triazolo-thiadiazin-3-yl fused ring system has a twisted half-chair form owing to the presence of the methylene-C10 group with the C10 atom lying 0.702 (3) Å out of the least-squares plane defined by the S2,N4,N5,C9,C11 atoms (r.m.s. deviation = 0.109 Å). The 1,3-benzothiazole ring forms dihedral angles of 13.90 (9) and 8.67 (8) °, respectively, with the triazole and benzene rings so that the entire molecule has a flattened shape.

In the crystal packing, C—H···N interactions, Table 1, lead to the formation of supramolecular chains along the a axis with an helical topology, Fig. 2. These assemble into zigzag layers in the ac plane with connections between them of the type C—H···π involving a methylene-H and the benzene ring, and π···π. The shortest interaction of the latter type of 3.5911 (12) Å occurs between the S1,N1,C1,C6,C7 and N2–N4,C8,C9 five-membered rings, Fig. 3.

Experimental

The title compound was prepared according to the reported method (Abdel-Aziz et al., 2007). Colourless crystals were obtained from an EtOH/DMF (v/v = 2/1) solution by slow evaporation at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular chains in (I) mediated by C—H···N interactions (blue dashed lines).

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The C—H···N, C—H···π and π···π interactions are shown as blue, purple and orange dashed lines, respectively.

Crystal data

C17H11N5S2 F(000) = 720
Mr = 349.43 Dx = 1.549 Mg m3
Orthorhombic, P21212 Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2 2ab Cell parameters from 3513 reflections
a = 12.1437 (3) Å θ = 3.6–74.3°
b = 21.2950 (5) Å µ = 3.29 mm1
c = 5.7946 (1) Å T = 100 K
V = 1498.48 (6) Å3 Plate, light-brown
Z = 4 0.25 × 0.25 × 0.05 mm

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 2902 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2751 reflections with I > 2σ(I)
mirror Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 74.5°, θmin = 4.2°
ω scan h = −15→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→26
Tmin = 0.715, Tmax = 1.000 l = −6→6
5754 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.021P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2902 reflections Δρmax = 0.21 e Å3
217 parameters Δρmin = −0.30 e Å3
0 restraints Absolute structure: Flack (1983), 1150 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.006 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.41692 (4) 0.42415 (2) 0.72377 (10) 0.01863 (14)
S2 0.51497 (4) 0.25815 (2) 1.48903 (10) 0.01803 (13)
N1 0.21298 (15) 0.38633 (8) 0.7555 (3) 0.0165 (4)
N2 0.24914 (15) 0.31575 (9) 1.1796 (3) 0.0170 (4)
N3 0.30068 (16) 0.28150 (8) 1.3539 (3) 0.0177 (4)
N4 0.42913 (15) 0.32303 (8) 1.1339 (3) 0.0142 (4)
N5 0.52940 (15) 0.34569 (8) 1.0531 (3) 0.0155 (4)
C1 0.32276 (18) 0.45294 (9) 0.5251 (4) 0.0173 (4)
C2 0.34046 (19) 0.49351 (11) 0.3396 (4) 0.0214 (5)
H2 0.4105 0.5121 0.3138 0.026*
C3 0.25298 (18) 0.50565 (10) 0.1955 (4) 0.0204 (5)
H3 0.2635 0.5325 0.0664 0.024*
C4 0.14936 (18) 0.47958 (9) 0.2342 (4) 0.0202 (5)
H4 0.0908 0.4887 0.1309 0.024*
C5 0.13077 (18) 0.44076 (10) 0.4203 (4) 0.0191 (5)
H5 0.0597 0.4237 0.4478 0.023*
C6 0.21838 (18) 0.42704 (9) 0.5676 (4) 0.0149 (4)
C7 0.30956 (18) 0.38046 (9) 0.8490 (4) 0.0139 (4)
C8 0.32714 (17) 0.34057 (9) 1.0515 (4) 0.0149 (4)
C9 0.40792 (19) 0.28660 (9) 1.3227 (4) 0.0153 (4)
C10 0.61131 (16) 0.25386 (9) 1.2505 (4) 0.0175 (4)
H10A 0.6859 0.2451 1.3118 0.021*
H10B 0.5904 0.2184 1.1489 0.021*
C11 0.61482 (18) 0.31330 (9) 1.1098 (4) 0.0143 (4)
C12 0.72157 (16) 0.33574 (8) 1.0201 (4) 0.0140 (4)
C13 0.72667 (19) 0.36733 (9) 0.8082 (4) 0.0171 (4)
H13 0.6617 0.3728 0.7193 0.021*
C14 0.82592 (18) 0.39051 (9) 0.7279 (4) 0.0180 (4)
H14 0.8288 0.4122 0.5846 0.022*
C15 0.92123 (19) 0.38220 (10) 0.8562 (4) 0.0186 (4)
H15 0.9891 0.3985 0.8010 0.022*
C16 0.91816 (19) 0.35013 (10) 1.0651 (4) 0.0184 (4)
H16 0.9838 0.3443 1.1518 0.022*
C17 0.81865 (18) 0.32671 (9) 1.1466 (4) 0.0159 (4)
H17 0.8164 0.3045 1.2886 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0133 (2) 0.0176 (2) 0.0250 (3) −0.00121 (19) −0.0008 (2) 0.0079 (2)
S2 0.0186 (3) 0.0185 (3) 0.0170 (3) 0.00037 (19) −0.0012 (2) 0.00396 (19)
N1 0.0172 (9) 0.0139 (8) 0.0184 (9) −0.0010 (7) −0.0006 (8) 0.0007 (8)
N2 0.0168 (9) 0.0155 (8) 0.0186 (9) −0.0002 (7) 0.0009 (8) 0.0010 (7)
N3 0.0185 (9) 0.0171 (9) 0.0175 (10) −0.0008 (7) 0.0015 (7) 0.0035 (7)
N4 0.0129 (9) 0.0131 (8) 0.0167 (9) −0.0003 (7) −0.0003 (7) 0.0014 (7)
N5 0.0134 (9) 0.0136 (8) 0.0195 (10) −0.0017 (7) 0.0019 (7) 0.0015 (7)
C1 0.0158 (10) 0.0138 (9) 0.0224 (11) 0.0024 (8) 0.0009 (9) 0.0014 (9)
C2 0.0168 (11) 0.0181 (10) 0.0295 (13) −0.0004 (9) 0.0018 (10) 0.0066 (9)
C3 0.0231 (12) 0.0158 (10) 0.0223 (11) 0.0039 (9) 0.0017 (10) 0.0065 (9)
C4 0.0201 (11) 0.0195 (10) 0.0211 (12) 0.0042 (8) −0.0038 (10) 0.0012 (9)
C5 0.0139 (11) 0.0198 (10) 0.0237 (12) 0.0009 (8) −0.0021 (9) 0.0014 (9)
C6 0.0173 (11) 0.0118 (8) 0.0157 (10) 0.0011 (8) 0.0013 (8) −0.0008 (8)
C7 0.0137 (9) 0.0105 (9) 0.0175 (11) −0.0002 (8) 0.0008 (8) −0.0011 (8)
C8 0.0127 (10) 0.0138 (9) 0.0183 (11) 0.0017 (8) −0.0010 (8) −0.0012 (8)
C9 0.0176 (10) 0.0121 (9) 0.0161 (10) 0.0003 (8) 0.0001 (8) 0.0004 (7)
C10 0.0139 (9) 0.0134 (9) 0.0252 (11) 0.0001 (8) −0.0016 (9) 0.0024 (9)
C11 0.0145 (10) 0.0122 (9) 0.0161 (10) −0.0022 (8) −0.0012 (8) −0.0024 (8)
C12 0.0143 (10) 0.0093 (8) 0.0184 (10) −0.0001 (7) −0.0001 (8) −0.0015 (8)
C13 0.0199 (11) 0.0124 (9) 0.0191 (11) −0.0002 (8) −0.0015 (9) 0.0005 (8)
C14 0.0218 (11) 0.0159 (9) 0.0161 (11) 0.0000 (8) 0.0033 (9) 0.0007 (9)
C15 0.0160 (10) 0.0180 (10) 0.0219 (11) −0.0031 (9) 0.0039 (9) −0.0027 (9)
C16 0.0161 (10) 0.0169 (9) 0.0221 (12) 0.0003 (8) −0.0015 (9) −0.0010 (8)
C17 0.0175 (11) 0.0123 (9) 0.0177 (11) 0.0013 (8) −0.0017 (9) −0.0002 (8)

Geometric parameters (Å, °)

S1—C1 1.734 (2) C4—H4 0.9500
S1—C7 1.758 (2) C5—C6 1.395 (3)
S2—C9 1.728 (2) C5—H5 0.9500
S2—C10 1.813 (2) C7—C8 1.464 (3)
N1—C7 1.298 (3) C10—C11 1.507 (3)
N1—C6 1.393 (3) C10—H10A 0.9900
N2—C8 1.314 (3) C10—H10B 0.9900
N2—N3 1.394 (3) C11—C12 1.476 (3)
N3—C9 1.319 (3) C12—C13 1.402 (3)
N4—C9 1.366 (3) C12—C17 1.401 (3)
N4—C8 1.379 (3) C13—C14 1.383 (3)
N4—N5 1.391 (2) C13—H13 0.9500
N5—C11 1.288 (3) C14—C15 1.387 (3)
C1—C2 1.396 (3) C14—H14 0.9500
C1—C6 1.404 (3) C15—C16 1.391 (3)
C2—C3 1.376 (3) C15—H15 0.9500
C2—H2 0.9500 C16—C17 1.390 (3)
C3—C4 1.394 (3) C16—H16 0.9500
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.377 (3)
C1—S1—C7 88.40 (10) N4—C8—C7 124.43 (19)
C9—S2—C10 94.47 (10) N3—C9—N4 110.04 (19)
C7—N1—C6 110.09 (18) N3—C9—S2 129.60 (17)
C8—N2—N3 107.21 (18) N4—C9—S2 120.26 (17)
C9—N3—N2 107.51 (17) C11—C10—S2 112.86 (14)
C9—N4—C8 105.17 (18) C11—C10—H10A 109.0
C9—N4—N5 129.18 (19) S2—C10—H10A 109.0
C8—N4—N5 125.17 (17) C11—C10—H10B 109.0
C11—N5—N4 115.69 (17) S2—C10—H10B 109.0
C2—C1—C6 121.1 (2) H10A—C10—H10B 107.8
C2—C1—S1 128.93 (17) N5—C11—C12 116.37 (18)
C6—C1—S1 109.87 (16) N5—C11—C10 124.40 (19)
C3—C2—C1 117.7 (2) C12—C11—C10 119.17 (18)
C3—C2—H2 121.1 C13—C12—C17 119.1 (2)
C1—C2—H2 121.1 C13—C12—C11 120.2 (2)
C2—C3—C4 121.6 (2) C17—C12—C11 120.7 (2)
C2—C3—H3 119.2 C14—C13—C12 120.3 (2)
C4—C3—H3 119.2 C14—C13—H13 119.8
C5—C4—C3 120.9 (2) C12—C13—H13 119.8
C5—C4—H4 119.6 C13—C14—C15 120.1 (2)
C3—C4—H4 119.6 C13—C14—H14 120.0
C4—C5—C6 118.7 (2) C15—C14—H14 120.0
C4—C5—H5 120.7 C14—C15—C16 120.5 (2)
C6—C5—H5 120.7 C14—C15—H15 119.8
C5—C6—N1 124.9 (2) C16—C15—H15 119.8
C5—C6—C1 119.93 (19) C17—C16—C15 119.7 (2)
N1—C6—C1 115.08 (19) C17—C16—H16 120.2
N1—C7—C8 121.47 (19) C15—C16—H16 120.2
N1—C7—S1 116.54 (16) C16—C17—C12 120.3 (2)
C8—C7—S1 121.97 (16) C16—C17—H17 119.8
N2—C8—N4 110.06 (18) C12—C17—H17 119.8
N2—C8—C7 125.50 (19)
C8—N2—N3—C9 −0.5 (2) S1—C7—C8—N2 166.92 (17)
C9—N4—N5—C11 25.6 (3) N1—C7—C8—N4 167.6 (2)
C8—N4—N5—C11 −163.6 (2) S1—C7—C8—N4 −13.8 (3)
C7—S1—C1—C2 −177.9 (2) N2—N3—C9—N4 0.0 (2)
C7—S1—C1—C6 −0.48 (16) N2—N3—C9—S2 176.46 (16)
C6—C1—C2—C3 −2.0 (3) C8—N4—C9—N3 0.5 (2)
S1—C1—C2—C3 175.07 (18) N5—N4—C9—N3 172.72 (19)
C1—C2—C3—C4 1.2 (4) C8—N4—C9—S2 −176.35 (15)
C2—C3—C4—C5 0.4 (4) N5—N4—C9—S2 −4.1 (3)
C3—C4—C5—C6 −1.2 (3) C10—S2—C9—N3 153.5 (2)
C4—C5—C6—N1 −176.8 (2) C10—S2—C9—N4 −30.35 (18)
C4—C5—C6—C1 0.3 (3) C9—S2—C10—C11 48.76 (17)
C7—N1—C6—C5 176.0 (2) N4—N5—C11—C12 178.39 (18)
C7—N1—C6—C1 −1.3 (3) N4—N5—C11—C10 1.0 (3)
C2—C1—C6—C5 1.3 (3) S2—C10—C11—N5 −41.2 (3)
S1—C1—C6—C5 −176.30 (16) S2—C10—C11—C12 141.45 (17)
C2—C1—C6—N1 178.7 (2) N5—C11—C12—C13 −30.4 (3)
S1—C1—C6—N1 1.1 (2) C10—C11—C12—C13 147.11 (19)
C6—N1—C7—C8 179.56 (17) N5—C11—C12—C17 148.6 (2)
C6—N1—C7—S1 0.9 (2) C10—C11—C12—C17 −33.9 (3)
C1—S1—C7—N1 −0.26 (18) C17—C12—C13—C14 −1.5 (3)
C1—S1—C7—C8 −178.90 (18) C11—C12—C13—C14 177.53 (19)
N3—N2—C8—N4 0.9 (2) C12—C13—C14—C15 0.5 (3)
N3—N2—C8—C7 −179.81 (18) C13—C14—C15—C16 0.6 (3)
C9—N4—C8—N2 −0.8 (2) C14—C15—C16—C17 −0.5 (3)
N5—N4—C8—N2 −173.48 (19) C15—C16—C17—C12 −0.5 (3)
C9—N4—C8—C7 179.81 (18) C13—C12—C17—C16 1.5 (3)
N5—N4—C8—C7 7.2 (3) C11—C12—C17—C16 −177.49 (19)
N1—C7—C8—N2 −11.7 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.
D—H···A D—H H···A D···A D—H···A
C10—H10a···N3i 0.99 2.45 3.333 (3) 148
C3—H3···Cg1ii 0.95 2.65 3.377 (2) 134

Symmetry codes: (i) x+1/2, −y+1/2, −z+3; (ii) −x+1, −y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5092).

References

  1. Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159. [DOI] [PubMed]
  2. Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.
  3. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem, 16, 621–627.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036452/hg5092sup1.cif

e-67-o2610-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036452/hg5092Isup2.hkl

e-67-o2610-Isup2.hkl (142.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036452/hg5092Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES