Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2789–o2790. doi: 10.1107/S1600536811039110

(2E)-1-(Pyridin-2-yl)-3-(2,4,6-trimeth­oxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, Thitipone Suwunwong b
PMCID: PMC3201482  PMID: 22065835

Abstract

The title heteroaryl chalcone derivative, C17H17NO4, is a condensation product of 2-acetyl­pyridine and 2,4,6-trimeth­oxy­benzaldehyde. The mol­ecule is roughly planar, the dihedral angle between the pyridine and benzene rings being 5.51 (10)°. All the three meth­oxy groups are almost co-planar with the bound benzene ring [r.m.s. deviation of 0.0306 (2) Å]. A weak C—H⋯O intra­molecular inter­action involving one of the ortho-meth­oxy groups generates an S(6) ring motif. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions into anti-parallel face-to-face pairs. Adjacent pairs are further connected into sheets parallel to the ab plane.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011). For background to and applications of chalcones and heteroaryl chalcones, see: Bandgar et al. (2010); Gacche et al. (2008); Go et al. (2005); Isomoto et al. (2005); Jung et al. (2008); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-67-o2789-scheme1.jpg

Experimental

Crystal data

  • C17H17NO4

  • M r = 299.32

  • Orthorhombic, Inline graphic

  • a = 31.563 (2) Å

  • b = 44.508 (3) Å

  • c = 3.9504 (3) Å

  • V = 5549.6 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.14 × 0.04 mm

Data collection

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.943, T max = 0.996

  • 31465 measured reflections

  • 2309 independent reflections

  • 1908 reflections with I > 2σ(I)

  • R int = 0.100

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.105

  • S = 1.09

  • 2309 reflections

  • 267 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039110/rz2642sup1.cif

e-67-o2789-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039110/rz2642Isup2.hkl

e-67-o2789-Isup2.hkl (113.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039110/rz2642Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 1.00 (2) 2.45 (3) 3.369 (2) 157.8 (17)
C7—H11B⋯O4 0.97 (3) 2.31 (2) 2.835 (2) 113.1 (18)
C17—H17B⋯O4ii 0.99 (2) 2.46 (2) 3.337 (3) 148 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund (grant No. RSA5280033) and Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

supplementary crystallographic information

Comment

Chalcones and heteroaryl chalcones have drawn a lot of interests due to their wide range of biological properties including antioxidant (Gacche et al., 2008), antibacterial (Go et al., 2005; Isomoto et al., 2005), anti-inflammatory and anticancer (Bandgar et al., 2010) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Furthermore they also exhibit fluorescent property (Jung et al., 2008; Suwunwong et al., 2011). In our on-going research on the biological and fluorescent properties of chalcones and heteroaryl chalcones (Chantrapromma et al., 2009; Fun et al., 2010, 2011; Suwunwong et al., 2011), the title heteroaryl chalcone derivative (I) was synthesized in order to study the effects of substituted postions on the fluorescent property in comparision with the closely related compounds (Fun et al., 2011; Suwunwong et al., 2011). In addition (I) was also tested for analgesic and antibacterial activities. Our results showed that (I) exhibits a moderate analgesic activity but is inactive for antibacterial activity. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone derivative (Fig. 1) exists in an E configuration with respect to the C7═C8 double bond [1.341 (3) Å]. The torsion angle C6–C7–C8–C9 is 179.0 (2)°. The molecule is almost planar with a dihedral angle between the pyridine and 2,4,6-trimethoxyphenyl rings of 5.51 (10)°. Atoms of the propenone bridge (C6, C7, C8 and O1) lie on the same plane [r.m.s. deviation of 0.017 (2)] and the torsion angle O1–C6–C7–C8 is -5.8 (4)°. The mean plane through this bridge makes dihedral angles of 6.96 (16) and 11.72 (16)° with the planes of pyridine and benzene rings, respectively. All the three substituted methoxy groups of the 2,4,6-trimethoxyphenyl unit are co-planar with the phenyl ring as indicated by the torsion angles C15–O2–C10–C11 = -0.4 (3)°, C16–O3–C12–C13 = 0.9 (3)° and C17–O4–C14–C13 = -4.7 (3)°. In the molecule, a weak intramolecular C7—H7A···O4 interaction (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and comparable with related structures (Chantrapromma et al., 2009; Fun et al., 2010; 2011).

In the crystal packing (Fig. 2), only the two ortho-methoxy groups are involved in weak C—H···O interactions (Table 1). The adjacent molecules are linked by weak C17—H17B···O4 interaction (Table 1) into anti-parallel face-to-face pairs. The adjacent pairs were further connected by weak C3—H3A···O2 interactions (Table 1) into sheets parallel to the ab plane which are stacked down the c axis. The crystal may be further stabilized by C···O [3.203 (2) Å] short contacts.

Experimental

The title compound was synthesized by the condensation reaction of 2,4,6-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylpyridine (0.20 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring in ice bath at 278 K for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Pale yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the evaporation of the solvent at room temperature after several days, M.p. 392-393 K.

Refinement

All H atoms were located in difference maps and refined isotropically. A total of 1754 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. A weak intramolecular C—H···O interaction is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis, showing molecular sheets parallel to the ab plane. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H17NO4 Dx = 1.433 Mg m3
Mr = 299.32 Melting point = 392–393 K
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 2309 reflections
a = 31.563 (2) Å θ = 1.6–30.0°
b = 44.508 (3) Å µ = 0.10 mm1
c = 3.9504 (3) Å T = 100 K
V = 5549.6 (7) Å3 Plate, pale yellow
Z = 16 0.58 × 0.14 × 0.04 mm
F(000) = 2528

Data collection

Bruker APEXII CCD area detector diffractometer 2309 independent reflections
Radiation source: sealed tube 1908 reflections with I > 2σ(I)
graphite Rint = 0.100
φ and ω scans θmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −44→44
Tmin = 0.943, Tmax = 0.996 k = −62→62
31465 measured reflections l = −5→5

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0467P)2 + 4.8268P] where P = (Fo2 + 2Fc2)/3
2309 reflections (Δ/σ)max = 0.001
267 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.18610 (5) 0.11217 (3) 1.2030 (5) 0.0298 (4)
O2 0.07115 (4) 0.04799 (3) 1.1758 (5) 0.0239 (3)
O3 0.05980 (4) −0.04831 (3) 0.6752 (5) 0.0248 (4)
O4 0.19307 (4) 0.00496 (3) 0.6918 (5) 0.0242 (4)
N1 0.27419 (5) 0.08486 (4) 0.7393 (6) 0.0245 (4)
C1 0.31419 (7) 0.09271 (5) 0.6662 (7) 0.0263 (5)
C2 0.33299 (7) 0.11932 (5) 0.7701 (7) 0.0266 (5)
C3 0.30912 (7) 0.13912 (5) 0.9612 (7) 0.0270 (5)
C4 0.26779 (7) 0.13153 (5) 1.0406 (7) 0.0254 (5)
C5 0.25139 (6) 0.10419 (4) 0.9256 (7) 0.0225 (4)
C6 0.20685 (6) 0.09511 (4) 1.0251 (7) 0.0226 (4)
C7 0.19132 (7) 0.06578 (4) 0.9048 (7) 0.0228 (4)
C8 0.15391 (7) 0.05521 (4) 1.0129 (7) 0.0228 (4)
C9 0.13222 (6) 0.02737 (4) 0.9251 (6) 0.0213 (4)
C10 0.08883 (6) 0.02411 (4) 1.0100 (6) 0.0217 (4)
C11 0.06569 (6) −0.00125 (4) 0.9267 (7) 0.0225 (4)
C12 0.08555 (6) −0.02465 (4) 0.7554 (6) 0.0216 (4)
C13 0.12828 (6) −0.02332 (4) 0.6760 (7) 0.0220 (4)
C14 0.15094 (6) 0.00253 (4) 0.7601 (6) 0.0217 (4)
C15 0.02726 (7) 0.04603 (5) 1.2600 (7) 0.0252 (5)
C16 0.07863 (7) −0.07331 (5) 0.5027 (7) 0.0259 (5)
C17 0.21410 (7) −0.02095 (5) 0.5537 (7) 0.0261 (5)
H1A 0.3305 (7) 0.0785 (5) 0.524 (8) 0.023 (6)*
H2A 0.3622 (7) 0.1239 (5) 0.708 (9) 0.027 (6)*
H3A 0.3216 (7) 0.1581 (5) 1.051 (8) 0.025 (6)*
H4A 0.2489 (7) 0.1445 (5) 1.187 (9) 0.030 (7)*
H8A 0.1375 (8) 0.0676 (6) 1.166 (9) 0.039 (8)*
H11A 0.0350 (7) −0.0029 (5) 0.980 (8) 0.023 (6)*
H11B 0.2095 (7) 0.0554 (5) 0.747 (9) 0.025 (6)*
H13A 0.1415 (7) −0.0402 (5) 0.545 (8) 0.025 (6)*
H15A 0.0101 (8) 0.0457 (6) 1.054 (9) 0.033 (8)*
H15B 0.0223 (8) 0.0281 (6) 1.428 (10) 0.038 (7)*
H15C 0.0194 (7) 0.0634 (5) 1.389 (8) 0.024 (7)*
H16A 0.0549 (7) −0.0874 (5) 0.453 (8) 0.023 (6)*
H16B 0.0916 (7) −0.0668 (5) 0.282 (9) 0.023 (6)*
H16C 0.1003 (8) −0.0827 (5) 0.644 (9) 0.031 (7)*
H17A 0.2010 (8) −0.0257 (6) 0.328 (9) 0.030 (8)*
H17B 0.2445 (7) −0.0160 (5) 0.542 (8) 0.025 (6)*
H17C 0.2105 (7) −0.0383 (5) 0.714 (9) 0.028 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0320 (8) 0.0216 (7) 0.0360 (11) −0.0005 (6) 0.0043 (8) −0.0058 (8)
O2 0.0246 (7) 0.0189 (6) 0.0283 (9) 0.0001 (5) 0.0026 (7) −0.0024 (7)
O3 0.0251 (7) 0.0175 (6) 0.0317 (10) −0.0026 (5) 0.0018 (7) −0.0032 (7)
O4 0.0236 (7) 0.0194 (6) 0.0295 (10) −0.0009 (5) 0.0026 (7) −0.0034 (7)
N1 0.0284 (9) 0.0189 (8) 0.0264 (11) 0.0003 (6) −0.0011 (8) −0.0007 (8)
C1 0.0279 (10) 0.0233 (9) 0.0276 (13) 0.0008 (8) 0.0002 (10) 0.0019 (10)
C2 0.0290 (11) 0.0239 (9) 0.0270 (13) −0.0012 (8) −0.0014 (10) 0.0061 (10)
C3 0.0320 (11) 0.0203 (9) 0.0288 (14) −0.0037 (8) −0.0050 (11) 0.0023 (10)
C4 0.0313 (11) 0.0197 (9) 0.0251 (12) −0.0004 (8) −0.0021 (10) 0.0009 (9)
C5 0.0274 (10) 0.0188 (9) 0.0214 (11) −0.0013 (7) −0.0012 (9) 0.0033 (9)
C6 0.0267 (10) 0.0185 (9) 0.0224 (11) 0.0004 (7) −0.0010 (9) 0.0029 (9)
C7 0.0278 (10) 0.0162 (9) 0.0242 (12) 0.0008 (7) −0.0007 (9) 0.0012 (9)
C8 0.0266 (10) 0.0173 (8) 0.0245 (12) 0.0013 (7) −0.0014 (9) 0.0017 (9)
C9 0.0258 (10) 0.0181 (9) 0.0200 (12) 0.0013 (7) −0.0009 (9) 0.0019 (9)
C10 0.0287 (10) 0.0162 (8) 0.0201 (11) 0.0015 (7) −0.0017 (9) 0.0011 (9)
C11 0.0233 (9) 0.0195 (9) 0.0248 (12) 0.0001 (7) 0.0002 (9) 0.0027 (9)
C12 0.0287 (10) 0.0156 (8) 0.0206 (12) −0.0024 (7) −0.0039 (9) 0.0021 (8)
C13 0.0263 (10) 0.0176 (8) 0.0220 (12) −0.0009 (7) −0.0012 (9) −0.0009 (9)
C14 0.0245 (10) 0.0191 (9) 0.0214 (12) 0.0007 (7) −0.0014 (9) 0.0028 (9)
C15 0.0247 (10) 0.0231 (9) 0.0279 (13) 0.0018 (8) 0.0003 (10) −0.0022 (10)
C16 0.0305 (11) 0.0179 (9) 0.0292 (13) −0.0016 (8) −0.0011 (10) −0.0026 (10)
C17 0.0264 (11) 0.0194 (9) 0.0325 (14) 0.0009 (8) 0.0045 (10) −0.0029 (10)

Geometric parameters (Å, °)

O1—C6 1.224 (3) C7—H11B 0.96 (3)
O2—C10 1.368 (2) C8—C9 1.458 (3)
O2—C15 1.427 (3) C8—H8A 0.97 (3)
O3—C12 1.367 (2) C9—C14 1.413 (3)
O3—C16 1.434 (3) C9—C10 1.417 (3)
O4—C14 1.361 (2) C10—C11 1.384 (3)
O4—C17 1.438 (3) C11—C12 1.392 (3)
N1—C5 1.341 (3) C11—H11A 0.99 (2)
N1—C1 1.342 (3) C12—C13 1.386 (3)
C1—C2 1.387 (3) C13—C14 1.395 (3)
C1—H1A 0.99 (3) C13—H13A 1.00 (3)
C2—C3 1.383 (3) C15—H15A 0.98 (3)
C2—H2A 0.97 (2) C15—H15B 1.05 (3)
C3—C4 1.384 (3) C15—H15C 0.96 (3)
C3—H3A 1.00 (2) C16—H16A 1.00 (2)
C4—C5 1.398 (3) C16—H16B 1.01 (3)
C4—H4A 1.01 (3) C16—H16C 0.98 (3)
C5—C6 1.515 (3) C17—H17A 1.01 (3)
C6—C7 1.474 (3) C17—H17B 0.99 (2)
C7—C8 1.341 (3) C17—H17C 1.00 (3)
C10—O2—C15 117.39 (16) O2—C10—C9 115.35 (17)
C12—O3—C16 117.48 (16) C11—C10—C9 122.49 (19)
C14—O4—C17 117.55 (16) C10—C11—C12 119.22 (19)
C5—N1—C1 117.13 (18) C10—C11—H11A 121.7 (14)
N1—C1—C2 124.1 (2) C12—C11—H11A 119.1 (14)
N1—C1—H1A 116.3 (13) O3—C12—C13 123.98 (18)
C2—C1—H1A 119.5 (13) O3—C12—C11 114.91 (18)
C3—C2—C1 118.2 (2) C13—C12—C11 121.11 (18)
C3—C2—H2A 121.2 (15) C12—C13—C14 118.69 (19)
C1—C2—H2A 120.6 (15) C12—C13—H13A 119.3 (13)
C2—C3—C4 118.8 (2) C14—C13—H13A 121.8 (13)
C2—C3—H3A 121.3 (14) O4—C14—C13 121.27 (19)
C4—C3—H3A 119.8 (14) O4—C14—C9 115.97 (17)
C3—C4—C5 119.2 (2) C13—C14—C9 122.75 (18)
C3—C4—H4A 123.1 (13) O2—C15—H15A 110.2 (17)
C5—C4—H4A 117.7 (13) O2—C15—H15B 109.8 (14)
N1—C5—C4 122.54 (19) H15A—C15—H15B 115 (2)
N1—C5—C6 117.99 (17) O2—C15—H15C 109.0 (14)
C4—C5—C6 119.4 (2) H15A—C15—H15C 108 (2)
O1—C6—C7 123.82 (19) H15B—C15—H15C 104 (2)
O1—C6—C5 118.70 (18) O3—C16—H16A 105.8 (14)
C7—C6—C5 117.47 (19) O3—C16—H16B 111.0 (14)
C8—C7—C6 120.1 (2) H16A—C16—H16B 108 (2)
C8—C7—H11B 124.1 (14) O3—C16—H16C 110.5 (17)
C6—C7—H11B 115.8 (14) H16A—C16—H16C 112 (2)
C7—C8—C9 129.5 (2) H16B—C16—H16C 109 (2)
C7—C8—H8A 118.2 (15) O4—C17—H17A 108.4 (15)
C9—C8—H8A 112.3 (15) O4—C17—H17B 106.7 (14)
C14—C9—C10 115.68 (17) H17A—C17—H17B 114 (2)
C14—C9—C8 125.35 (18) O4—C17—H17C 109.0 (16)
C10—C9—C8 118.97 (18) H17A—C17—H17C 111 (2)
O2—C10—C11 122.16 (18) H17B—C17—H17C 108 (2)
C5—N1—C1—C2 −0.2 (4) C8—C9—C10—O2 −1.0 (3)
N1—C1—C2—C3 0.0 (4) C14—C9—C10—C11 −2.2 (3)
C1—C2—C3—C4 0.1 (4) C8—C9—C10—C11 178.1 (2)
C2—C3—C4—C5 −0.1 (4) O2—C10—C11—C12 179.5 (2)
C1—N1—C5—C4 0.3 (3) C9—C10—C11—C12 0.5 (4)
C1—N1—C5—C6 −177.1 (2) C16—O3—C12—C13 0.9 (3)
C3—C4—C5—N1 −0.1 (4) C16—O3—C12—C11 −179.1 (2)
C3—C4—C5—C6 177.2 (2) C10—C11—C12—O3 −178.1 (2)
N1—C5—C6—O1 178.0 (2) C10—C11—C12—C13 1.9 (4)
C4—C5—C6—O1 0.5 (3) O3—C12—C13—C14 177.6 (2)
N1—C5—C6—C7 −1.1 (3) C11—C12—C13—C14 −2.3 (3)
C4—C5—C6—C7 −178.5 (2) C17—O4—C14—C13 −4.7 (3)
O1—C6—C7—C8 −5.8 (4) C17—O4—C14—C9 174.2 (2)
C5—C6—C7—C8 173.2 (2) C12—C13—C14—O4 179.2 (2)
C6—C7—C8—C9 179.0 (2) C12—C13—C14—C9 0.4 (3)
C7—C8—C9—C14 14.7 (4) C10—C9—C14—O4 −177.1 (2)
C7—C8—C9—C10 −165.6 (2) C8—C9—C14—O4 2.6 (3)
C15—O2—C10—C11 −0.4 (3) C10—C9—C14—C13 1.8 (3)
C15—O2—C10—C9 178.7 (2) C8—C9—C14—C13 −178.6 (2)
C14—C9—C10—O2 178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O2i 1.00 (2) 2.45 (3) 3.369 (2) 157.8 (17)
C7—H11B···O4 0.97 (3) 2.31 (2) 2.835 (2) 113.1 (18)
C17—H17B···O4ii 0.99 (2) 2.46 (2) 3.337 (3) 148 (2)

Symmetry codes: (i) x+9/4, −y+9/4, z+1/4; (ii) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2642).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, N. (2010). Bioorg. Med. Chem. 18, 1364–1370. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o2406–o2407. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559–o2560. [DOI] [PMC free article] [PubMed]
  9. Gacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28–31. [DOI] [PubMed]
  10. Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.
  11. Isomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629–1633. [DOI] [PMC free article] [PubMed]
  12. Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron 27, 861–867.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap., doi: 10.2478/s11696-011-0084-4.
  16. Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039110/rz2642sup1.cif

e-67-o2789-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039110/rz2642Isup2.hkl

e-67-o2789-Isup2.hkl (113.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039110/rz2642Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES