Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2617. doi: 10.1107/S1600536811034933

1-{(1Z)-1-[6-(4-Chloro­phen­oxy)hex­y­l­oxy]-1-(2,4-difluoro­phen­yl)prop-1-en-2-yl}-1H-1,2,4-triazol-4-ium nitrate

Wen-qian Wan a, Kai Wang a, Yong-hong Hu a,*, Fei Shen a, Wen-ge Yang a
PMCID: PMC3201488  PMID: 22058762

Abstract

In the title compound, C23H25ClF2N3O2 +·NO3 , the triazole ring makes dihedral angles of 60.9 (4) and 25.0 (3)° with the 6-chloro­phenyl and 2,4-difluoro­phenyl rings, respectively. The mol­ecule adopts a Z configuration about the C=C double bond. In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For the use of triazole derivatives as anti­fungal agents, see: Jeu et al. (2003); Fromtling & Castaner (1996). For the synthesis, see: Zirngibl & Thiele (1985). graphic file with name e-67-o2617-scheme1.jpg

Experimental

Crystal data

  • C23H25ClF2N3O2 +·NO3

  • M r = 510.92

  • Monoclinic, Inline graphic

  • a = 35.538 (7) Å

  • b = 8.5550 (17) Å

  • c = 17.072 (3) Å

  • β = 105.21 (3)°

  • V = 5008.6 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.940, T max = 0.980

  • 9194 measured reflections

  • 4628 independent reflections

  • 1954 reflections with I > 2σ(I)

  • R int = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.176

  • S = 1.00

  • 4628 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034933/nc2240sup1.cif

e-67-o2617-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034933/nc2240Isup2.hkl

e-67-o2617-Isup2.hkl (226.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034933/nc2240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 1.8 2.661 (5) 175
C22—H22A⋯O4ii 0.93 2.38 3.077 (6) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research work was supported financially by the Program of Six Talent Tops Foundation of Jiangsu Province (2009 No. 2009118) and the Natural Science Basic Research Program of Higher Education in Jiangsu Province (08 K J A530002).

supplementary crystallographic information

Comment

Triazole derivatives such as Voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and Posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003; Fromtling & Castaner, 1996) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound the double bond is Z configurated. In the crystal structure the anions and cations are connected via N—H···O hydrogen bonding and weak and C—H···O interactions (Table 1 and Fig. 2).

Experimental

Details on the synthesis can be found in the literature reported by Zirngibl & Thiele (1985). 3 g (0.01 mol) 1-(2,4-difluorophenyl)-2-(1,2,4-triazol)-1-y1)propan-1-one, 10 g of a 50% aqueous sodium hydroxide, 15 ml toluene and 1.5 ml of a 40% aqueous solution of tetrabutyl ammonium hydroxide are mixed and heated to 323.15 K under vigorous stirring. 3.0 g (0.01 mol) 1-bromo-6- (4-chlorophenoxy)-hexane, dissolved in 10 ml toluene, is instilled into the stirred and warmed solution in the course of 10 h. The mixture is subsequently stirred for another 20 h at 323.15 K. The reaction mixture is mixed with as much water and chloroform so that the aqueous phase becomes lighter than the organic phase. Thereafter, the organic and aqueous phases are separated. The organic phase is dried with sodium sulfate. The solvents are distilled under reduced pressure. The remaining residue is a dark oil that is diluted with 10 ml 2-propanol and then adjusted to a PH-value of 2 by means of 30% aqueous nitric acid. The thus derived nitric acid solution is then cooled in the refrigerator. The impure precipitated product herein is subsequently crystallized from a 1:1 mixture of ethyl acetate and ethanol. The purified product may be analytically identified as an approximately pure Z-isomer of propylene nitrate. Crystals of title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and with N—H = 0.86 Å for triazole H atom, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.

Fig. 2.

Fig. 2.

The packing diagram of the title compound. Hydron bonds are shown as dashed lines.

Crystal data

C23H25ClF2N3O2+·NO3 F(000) = 2128
Mr = 510.92 Dx = 1.355 Mg m3
Monoclinic, C2/c Melting point: 383.15 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 35.538 (7) Å Cell parameters from 25 reflections
b = 8.5550 (17) Å θ = 9–13°
c = 17.072 (3) Å µ = 0.21 mm1
β = 105.21 (3)° T = 293 K
V = 5008.6 (17) Å3 Block, yellow
Z = 8 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1954 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.063
graphite θmax = 25.5°, θmin = 1.2°
ω/2θ scans h = −42→42
Absorption correction: ψ scan (North et al., 1968) k = −10→0
Tmin = 0.940, Tmax = 0.980 l = −20→20
9194 measured reflections 3 standard reflections every 200 reflections
4628 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
4628 reflections Δρmax = 0.18 e Å3
317 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0017 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.24234 (4) 0.19455 (19) 0.11286 (9) 0.1265 (6)
N1 0.60062 (8) 0.8994 (3) 0.62210 (18) 0.0581 (8)
O1 0.39276 (8) 0.4929 (4) 0.25522 (17) 0.0823 (9)
F1 0.73827 (8) 0.7269 (3) 0.34649 (16) 0.1146 (10)
C1 0.32631 (12) 0.4430 (5) 0.2609 (2) 0.0796 (13)
H1A 0.3293 0.5017 0.3080 0.096*
O2 0.58960 (7) 0.7156 (3) 0.48863 (16) 0.0806 (9)
F2 0.68002 (7) 0.5624 (3) 0.54599 (15) 0.1046 (9)
N2 0.61212 (9) 0.9274 (4) 0.70427 (19) 0.0790 (10)
C2 0.29134 (12) 0.3703 (6) 0.2254 (3) 0.0834 (13)
H2B 0.2707 0.3798 0.2493 0.100*
N3 0.54892 (9) 0.8995 (4) 0.6624 (2) 0.0728 (10)
H3A 0.5249 0.8934 0.6638 0.087*
C3 0.28647 (12) 0.2854 (6) 0.1564 (3) 0.0805 (13)
C4 0.31692 (13) 0.2685 (5) 0.1204 (3) 0.0774 (12)
H4A 0.3137 0.2095 0.0734 0.093*
C5 0.35210 (11) 0.3405 (5) 0.1553 (2) 0.0693 (11)
H5A 0.3727 0.3306 0.1314 0.083*
C6 0.35694 (11) 0.4270 (5) 0.2254 (2) 0.0666 (11)
C7 0.39858 (12) 0.5892 (6) 0.3251 (3) 0.0944 (14)
H7A 0.3968 0.5268 0.3714 0.113*
H7B 0.3786 0.6692 0.3162 0.113*
C8 0.43785 (13) 0.6638 (6) 0.3416 (3) 0.1040 (16)
H8A 0.4391 0.7249 0.2945 0.125*
H8B 0.4406 0.7357 0.3867 0.125*
C9 0.47111 (12) 0.5551 (6) 0.3607 (3) 0.0940 (15)
H9A 0.4698 0.4879 0.3143 0.113*
H9B 0.4695 0.4895 0.4060 0.113*
C10 0.51068 (13) 0.6424 (6) 0.3825 (3) 0.1051 (16)
H10A 0.5125 0.7054 0.3364 0.126*
H10B 0.5114 0.7126 0.4275 0.126*
C11 0.54449 (13) 0.5380 (6) 0.4046 (3) 0.1036 (16)
H11A 0.5423 0.4622 0.3613 0.124*
H11B 0.5435 0.4810 0.4531 0.124*
C12 0.58357 (12) 0.6168 (6) 0.4198 (3) 0.1026 (16)
H12A 0.6040 0.5384 0.4288 0.123*
H12B 0.5847 0.6779 0.3726 0.123*
C13 0.62371 (10) 0.7959 (5) 0.5136 (2) 0.0553 (9)
C14 0.65339 (10) 0.7764 (5) 0.4670 (2) 0.0562 (10)
C15 0.65451 (12) 0.8748 (5) 0.4041 (2) 0.0796 (12)
H15A 0.6361 0.9540 0.3894 0.095*
C16 0.68307 (14) 0.8571 (6) 0.3618 (3) 0.0880 (14)
H16A 0.6835 0.9218 0.3182 0.106*
C17 0.71014 (12) 0.7424 (6) 0.3862 (3) 0.0754 (13)
C18 0.71030 (11) 0.6422 (5) 0.4471 (3) 0.0742 (12)
H18A 0.7289 0.5638 0.4622 0.089*
C19 0.68107 (11) 0.6632 (5) 0.4859 (2) 0.0638 (11)
C20 0.62999 (10) 0.8855 (5) 0.5780 (2) 0.0584 (10)
C21 0.66594 (11) 0.9797 (6) 0.6133 (3) 0.0979 (16)
H21A 0.6842 0.9647 0.5813 0.147*
H21B 0.6775 0.9464 0.6680 0.147*
H21C 0.6592 1.0883 0.6131 0.147*
C22 0.57978 (13) 0.9257 (5) 0.7252 (3) 0.0823 (13)
H22A 0.5781 0.9410 0.7781 0.099*
C23 0.56259 (11) 0.8848 (5) 0.5979 (2) 0.0700 (11)
H23A 0.5479 0.8672 0.5450 0.084*
N4 0.45438 (12) 0.1212 (5) 0.0878 (3) 0.0839 (11)
O3 0.41881 (10) 0.1263 (5) 0.0716 (2) 0.1251 (13)
O4 0.47371 (9) 0.1062 (5) 0.1602 (2) 0.1148 (13)
O5 0.47201 (9) 0.1337 (4) 0.03508 (19) 0.1087 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0756 (9) 0.1377 (13) 0.1570 (13) −0.0353 (8) 0.0145 (8) −0.0120 (10)
N1 0.0538 (19) 0.066 (2) 0.058 (2) 0.0018 (16) 0.0214 (15) −0.0005 (17)
O1 0.0680 (19) 0.100 (2) 0.0800 (19) −0.0165 (17) 0.0211 (14) −0.0192 (18)
F1 0.1021 (19) 0.133 (2) 0.142 (2) −0.0203 (17) 0.0900 (18) −0.0211 (19)
C1 0.071 (3) 0.106 (4) 0.068 (3) −0.006 (3) 0.028 (2) −0.001 (3)
O2 0.0637 (18) 0.101 (2) 0.088 (2) −0.0172 (16) 0.0399 (15) −0.0352 (18)
F2 0.0991 (19) 0.124 (2) 0.1046 (19) 0.0447 (16) 0.0508 (15) 0.0433 (17)
N2 0.070 (2) 0.114 (3) 0.060 (2) 0.001 (2) 0.0299 (18) −0.004 (2)
C2 0.063 (3) 0.106 (4) 0.089 (3) −0.011 (3) 0.034 (2) 0.014 (3)
N3 0.059 (2) 0.080 (3) 0.091 (3) −0.0028 (19) 0.040 (2) −0.006 (2)
C3 0.064 (3) 0.086 (3) 0.091 (3) −0.014 (2) 0.018 (3) 0.007 (3)
C4 0.079 (3) 0.073 (3) 0.077 (3) −0.010 (3) 0.013 (2) −0.003 (2)
C5 0.067 (3) 0.072 (3) 0.074 (3) −0.005 (2) 0.027 (2) 0.000 (2)
C6 0.054 (2) 0.074 (3) 0.070 (3) −0.009 (2) 0.013 (2) 0.004 (2)
C7 0.077 (3) 0.105 (4) 0.096 (3) −0.015 (3) 0.015 (3) −0.019 (3)
C8 0.084 (4) 0.101 (4) 0.113 (4) −0.013 (3) 0.001 (3) −0.024 (3)
C9 0.069 (3) 0.106 (4) 0.099 (3) −0.020 (3) 0.008 (2) −0.005 (3)
C10 0.080 (3) 0.113 (4) 0.115 (4) −0.015 (3) 0.014 (3) −0.019 (3)
C11 0.077 (3) 0.119 (4) 0.117 (4) −0.014 (3) 0.029 (3) −0.023 (3)
C12 0.063 (3) 0.139 (4) 0.109 (4) −0.017 (3) 0.029 (3) −0.050 (4)
C13 0.046 (2) 0.063 (3) 0.059 (2) 0.001 (2) 0.0191 (18) 0.002 (2)
C14 0.052 (2) 0.065 (3) 0.057 (2) 0.001 (2) 0.0227 (18) 0.002 (2)
C15 0.079 (3) 0.084 (3) 0.085 (3) 0.012 (2) 0.038 (2) 0.012 (3)
C16 0.103 (4) 0.093 (4) 0.083 (3) −0.011 (3) 0.052 (3) 0.010 (3)
C17 0.066 (3) 0.084 (4) 0.091 (3) −0.019 (3) 0.046 (3) −0.020 (3)
C18 0.053 (2) 0.085 (3) 0.091 (3) −0.001 (2) 0.031 (2) −0.011 (3)
C19 0.061 (2) 0.075 (3) 0.059 (2) 0.001 (2) 0.023 (2) 0.006 (2)
C20 0.049 (2) 0.073 (3) 0.058 (2) 0.004 (2) 0.0211 (18) 0.001 (2)
C21 0.067 (3) 0.132 (4) 0.105 (3) −0.030 (3) 0.040 (2) −0.040 (3)
C22 0.083 (3) 0.109 (4) 0.064 (3) −0.008 (3) 0.036 (3) −0.011 (3)
C23 0.051 (2) 0.094 (3) 0.070 (3) −0.001 (2) 0.025 (2) −0.011 (3)
N4 0.071 (3) 0.099 (3) 0.091 (3) −0.004 (2) 0.037 (2) −0.015 (3)
O3 0.064 (2) 0.180 (4) 0.134 (3) −0.024 (2) 0.0314 (19) −0.032 (3)
O4 0.076 (2) 0.192 (4) 0.089 (2) 0.014 (2) 0.0453 (19) 0.026 (3)
O5 0.092 (2) 0.156 (3) 0.094 (2) 0.004 (2) 0.0514 (19) 0.001 (2)

Geometric parameters (Å, °)

Cl—C3 1.733 (4) C9—H9A 0.9700
N1—C23 1.311 (4) C9—H9B 0.9700
N1—N2 1.375 (4) C10—C11 1.465 (6)
N1—C20 1.443 (4) C10—H10A 0.9700
O1—C6 1.363 (4) C10—H10B 0.9700
O1—C7 1.420 (5) C11—C12 1.503 (5)
F1—C17 1.353 (4) C11—H11A 0.9700
C1—C2 1.379 (5) C11—H11B 0.9700
C1—C6 1.385 (5) C12—H12A 0.9700
C1—H1A 0.9300 C12—H12B 0.9700
O2—C13 1.361 (4) C13—C20 1.310 (5)
O2—C12 1.418 (5) C13—C14 1.488 (5)
F2—C19 1.349 (4) C14—C19 1.358 (5)
N2—C22 1.290 (4) C14—C15 1.374 (5)
C2—C3 1.357 (5) C15—C16 1.400 (5)
C2—H2B 0.9300 C15—H15A 0.9300
N3—C23 1.321 (4) C16—C17 1.361 (6)
N3—C22 1.335 (5) C16—H16A 0.9300
N3—H3A 0.8600 C17—C18 1.347 (5)
C3—C4 1.385 (6) C18—C19 1.381 (5)
C4—C5 1.381 (5) C18—H18A 0.9300
C4—H4A 0.9300 C20—C21 1.497 (5)
C5—C6 1.378 (5) C21—H21A 0.9600
C5—H5A 0.9300 C21—H21B 0.9600
C7—C8 1.492 (5) C21—H21C 0.9600
C7—H7A 0.9700 C22—H22A 0.9300
C7—H7B 0.9700 C23—H23A 0.9300
C8—C9 1.472 (6) N4—O3 1.222 (4)
C8—H8A 0.9700 N4—O4 1.253 (4)
C8—H8B 0.9700 N4—O5 1.229 (4)
C9—C10 1.548 (6)
C23—N1—N2 110.1 (3) C10—C11—C12 115.4 (5)
C23—N1—C20 130.9 (3) C10—C11—H11A 108.4
N2—N1—C20 119.0 (3) C12—C11—H11A 108.4
C6—O1—C7 118.1 (3) C10—C11—H11B 108.4
C2—C1—C6 119.0 (4) C12—C11—H11B 108.4
C2—C1—H1A 120.5 H11A—C11—H11B 107.5
C6—C1—H1A 120.5 O2—C12—C11 110.0 (4)
C13—O2—C12 119.3 (3) O2—C12—H12A 109.7
C22—N2—N1 103.4 (3) C11—C12—H12A 109.7
C3—C2—C1 121.2 (4) O2—C12—H12B 109.7
C3—C2—H2B 119.4 C11—C12—H12B 109.7
C1—C2—H2B 119.4 H12A—C12—H12B 108.2
C23—N3—C22 106.3 (3) C20—C13—O2 120.0 (3)
C23—N3—H3A 126.9 C20—C13—C14 121.7 (3)
C22—N3—H3A 126.9 O2—C13—C14 118.3 (3)
C2—C3—C4 120.3 (4) C19—C14—C15 117.0 (3)
C2—C3—Cl 120.5 (4) C19—C14—C13 121.7 (3)
C4—C3—Cl 119.2 (4) C15—C14—C13 121.3 (4)
C3—C4—C5 119.1 (4) C14—C15—C16 120.7 (4)
C3—C4—H4A 120.4 C14—C15—H15A 119.6
C5—C4—H4A 120.4 C16—C15—H15A 119.6
C6—C5—C4 120.5 (4) C17—C16—C15 118.0 (4)
C6—C5—H5A 119.8 C17—C16—H16A 121.0
C4—C5—H5A 119.8 C15—C16—H16A 121.0
O1—C6—C5 116.0 (3) C18—C17—F1 118.1 (5)
O1—C6—C1 124.0 (4) C18—C17—C16 123.7 (4)
C5—C6—C1 120.0 (4) F1—C17—C16 118.2 (5)
O1—C7—C8 109.3 (4) C17—C18—C19 115.8 (4)
O1—C7—H7A 109.8 C17—C18—H18A 122.1
C8—C7—H7A 109.8 C19—C18—H18A 122.1
O1—C7—H7B 109.8 F2—C19—C14 118.3 (3)
C8—C7—H7B 109.8 F2—C19—C18 117.1 (4)
H7A—C7—H7B 108.3 C14—C19—C18 124.6 (4)
C9—C8—C7 115.4 (4) C13—C20—N1 119.9 (3)
C9—C8—H8A 108.4 C13—C20—C21 126.3 (3)
C7—C8—H8A 108.4 N1—C20—C21 113.8 (3)
C9—C8—H8B 108.4 C20—C21—H21A 109.5
C7—C8—H8B 108.4 C20—C21—H21B 109.5
H8A—C8—H8B 107.5 H21A—C21—H21B 109.5
C8—C9—C10 112.0 (4) C20—C21—H21C 109.5
C8—C9—H9A 109.2 H21A—C21—H21C 109.5
C10—C9—H9A 109.2 H21B—C21—H21C 109.5
C8—C9—H9B 109.2 N2—C22—N3 112.6 (4)
C10—C9—H9B 109.2 N2—C22—H22A 123.7
H9A—C9—H9B 107.9 N3—C22—H22A 123.7
C11—C10—C9 113.6 (4) N1—C23—N3 107.6 (3)
C11—C10—H10A 108.8 N1—C23—H23A 126.2
C9—C10—H10A 108.8 N3—C23—H23A 126.2
C11—C10—H10B 108.8 O3—N4—O4 119.6 (4)
C9—C10—H10B 108.8 O3—N4—O5 121.8 (4)
H10A—C10—H10B 107.7 O4—N4—O5 118.6 (4)
C23—N1—N2—C22 0.9 (5) C19—C14—C15—C16 0.2 (6)
C20—N1—N2—C22 −177.0 (3) C13—C14—C15—C16 178.7 (4)
C6—C1—C2—C3 −0.6 (7) C14—C15—C16—C17 −1.6 (7)
C1—C2—C3—C4 0.7 (7) C15—C16—C17—C18 2.0 (7)
C1—C2—C3—Cl 179.8 (3) C15—C16—C17—F1 −178.7 (4)
C2—C3—C4—C5 −0.6 (7) F1—C17—C18—C19 179.8 (3)
Cl—C3—C4—C5 −179.8 (3) C16—C17—C18—C19 −0.9 (6)
C3—C4—C5—C6 0.5 (6) C15—C14—C19—F2 −178.2 (3)
C7—O1—C6—C5 177.0 (4) C13—C14—C19—F2 3.2 (5)
C7—O1—C6—C1 −2.8 (6) C15—C14—C19—C18 1.1 (6)
C4—C5—C6—O1 179.8 (3) C13—C14—C19—C18 −177.5 (4)
C4—C5—C6—C1 −0.4 (6) C17—C18—C19—F2 178.6 (3)
C2—C1—C6—O1 −179.7 (4) C17—C18—C19—C14 −0.7 (6)
C2—C1—C6—C5 0.4 (6) O2—C13—C20—N1 −0.3 (5)
C6—O1—C7—C8 −173.4 (4) C14—C13—C20—N1 −179.1 (3)
O1—C7—C8—C9 −62.7 (6) O2—C13—C20—C21 179.5 (4)
C7—C8—C9—C10 −176.3 (4) C14—C13—C20—C21 0.7 (6)
C8—C9—C10—C11 178.0 (4) C23—N1—C20—C13 −27.6 (6)
C9—C10—C11—C12 175.4 (4) N2—N1—C20—C13 149.8 (3)
C13—O2—C12—C11 178.8 (4) C23—N1—C20—C21 152.6 (4)
C10—C11—C12—O2 64.8 (6) N2—N1—C20—C21 −30.0 (5)
C12—O2—C13—C20 −178.8 (4) N1—N2—C22—N3 −0.3 (5)
C12—O2—C13—C14 0.1 (5) C23—N3—C22—N2 −0.4 (5)
C20—C13—C14—C19 89.2 (5) N2—N1—C23—N3 −1.2 (5)
O2—C13—C14—C19 −89.7 (4) C20—N1—C23—N3 176.4 (3)
C20—C13—C14—C15 −89.3 (5) C22—N3—C23—N1 1.0 (5)
O2—C13—C14—C15 91.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O4i 0.86 1.8 2.661 (5) 175
C22—H22A···O4ii 0.93 2.38 3.077 (6) 131

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2240).

References

  1. Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Fromtling, R. & Castaner, J. (1996). Drugs Future, 21, 160–166.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321–1381. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zirngibl, L. & Thiele, K. (1985). US Patent Appl. US4554356.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034933/nc2240sup1.cif

e-67-o2617-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034933/nc2240Isup2.hkl

e-67-o2617-Isup2.hkl (226.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034933/nc2240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES