Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2761. doi: 10.1107/S1600536811038220

Acridine 0.75-hydrate

Einat Schur a,*, Joel Bernstein a, Andreas Lemmerer a, Radion Vainer a
PMCID: PMC3201491  PMID: 22064774

Abstract

The title compound, C13H9N·0.75H2O was obtained during a study of the polymorphic system of acridine, by slow evaporation from an ethanol–water solution. There are two acridine mol­ecules (indicated by I and II, respectively) and one and a half water mol­ecules in the asymmetric unit. The half-mol­ecule of water is located on a crystallographic twofold axis. The crystal structure is built up from two threads of mol­ecule II sewn together with water mol­ecules through O—H⋯O and O—H⋯N hydrogen bonds from one side and with π–π inter­actions [centroid–centroid distance = 3.640 (3) and 3.7431 (3) Å] between overlapping mol­ecules II on the other side. Mol­ecule I is attached to this thread from both sides by C—H⋯O hydrogen bonds. The threads are connected to each other by π–π inter­actions [centroid–centroid distances = 3.582 (3) and 3.582 (3) Å] between the inner side of mol­ecule I and stabilized by a C—H⋯π inter­action on the other side of mol­ecule I. This thread with rows of mol­ecule I hanging on its sides is generated by translation perpendicular to the a axis.

Related literature

For the five anhydrous polymorphs of acridine, see: Phillips (1954, 1956), Phillips et al. (1960) and Mei & Wolf (2004) for monoclinic forms VI and VII, and Braga et al. (2010) for ortho­rhom­bic form IV and monoclinic forms II and III. For further crystallographic studies of acridine hydrate, see: Groth (1919); Lowde et al. (1953). graphic file with name e-67-o2761-scheme1.jpg

Experimental

Crystal data

  • C13H9N·0.75H2O

  • M r = 192.71

  • Orthorhombic, Inline graphic

  • a = 26.400 (5) Å

  • b = 8.893 (5) Å

  • c = 17.492 (5) Å

  • V = 4107 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 197 K

  • 0.3 × 0.3 × 0.3 mm

Data collection

  • Bruker SMART 6000 diffractometer

  • 14504 measured reflections

  • 3606 independent reflections

  • 1733 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.197

  • S = 1.00

  • 3606 reflections

  • 272 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038220/ez2255sup1.cif

e-67-o2761-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038220/ez2255Isup2.hkl

e-67-o2761-Isup2.hkl (176.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038220/ez2255Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1/C6–C8/C13/N1 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N2 0.933 (3) 1.942 (2) 2.873 (4) 175.2 (2)
C7—H7⋯O1 0.93 2.35 3.271 (4) 171
O1—H1⋯O2i 0.95 (1) 1.98 (5) 2.777 (4) 139 (6)
C16—H16⋯Cg1ii 0.93 2.93 3.773 (5) 152
C18—H18⋯Cg2iii 0.93 2.93 3.848 (5) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Acridine hydrate is the hydrated form of the very rich polymorphic system of acridine. There are five anhydrous polymorphs of acridine with fully analyzed structures: an orthorhombic form and four monoclinic forms. For the orthorhombic form (form IV) cell parameters were first published by Phillips (1954), and the full solution was recently published by Braga et al. (2010). The monoclinic forms are designated II, III, VI and VII. The crystal structure of forms III and II respectively were determined by Phillips (1956) and Phillips et al. (1960) and redetermined by Mei and Wolf (2004) and by Braga et al. (2010). Forms VI and VII were reported by Mei and Wolf (2004). The form described in this paper was initially thought to be one of the first polymorphs of acridine and known historically as the orthorhombic form of Groth (1919) and subsequently labeled as acridine I. Lowde et al. (1953) established the unit cell parameters, the space group and the density. From analysis using the Karl Fischer reagent, it was concluded that acridine I is in fact the monohydrate and not a polymorph of acridine.

There are two acridine molecules and one and a half water molecules in the asymmetric unit (see Fig. 1). In the packing diagram (see Fig. 2), molecule I is colored in green, molecule II is colored in blue, the water molecule that is sitting on a two fold axis is red and the other one is in yellow. The molecules are linked by O—H···O and C—H···O hydrogen bonds (see Table 1).

Experimental

The title compound was obtained by slow evaporation from an ethanol-water solution in 3:1 and 2:1 ratio at 4°C. The crystals are unstable at room temperature and transform to the anhydrous form III. The common habit of acridine hydrate is thick yellow needles but other habits may be obtained as well.

Refinement

The water H atoms were located in a difference map and refined with distance restraints of O—H = 0.94 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.930 (1) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with atom labels and 50% probability displacement ellipsoids for non-H atoms. Atom H1i is generated by a two-fold axis (-x, y, -z-1/2).

Fig. 2.

Fig. 2.

The packing of acridine hydrate viewed down the b axis. Hydrogen bonds are marked in dashed lines.

Crystal data

C13H9N·0.75H2O F(000) = 1632
Mr = 192.71 Dx = 1.247 Mg m3Dm = 1.247 Mg m3Dm measured by not measured
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 1764 reflections
a = 26.400 (5) Å θ = 2.3–21.8°
b = 8.893 (5) Å µ = 0.08 mm1
c = 17.492 (5) Å T = 197 K
V = 4107 (3) Å3 Cube, yellow
Z = 16 0.3 × 0.3 × 0.3 mm

Data collection

Bruker SMART 6000 diffractometer 1733 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.068
graphite θmax = 25.0°, θmin = 3.3°
phi and ω scans h = −31→22
14504 measured reflections k = −10→9
3606 independent reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0837P)2 + 1.779P] where P = (Fo2 + 2Fc2)/3
3606 reflections (Δ/σ)max = 0.035
272 parameters Δρmax = 0.35 e Å3
2 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.08797 (12) 0.6902 (4) −0.0316 (2) 0.0579 (9)
C2 0.10417 (14) 0.8419 (5) −0.0350 (2) 0.0746 (11)
H2 0.1166 0.8883 0.0088 0.090*
C3 0.10180 (15) 0.9206 (5) −0.1017 (3) 0.0846 (13)
H3 0.1125 1.0202 −0.1031 0.102*
C4 0.08311 (15) 0.8515 (6) −0.1688 (3) 0.0839 (13)
H4 0.0813 0.9066 −0.2140 0.101*
C5 0.06791 (14) 0.7066 (5) −0.1681 (2) 0.0741 (11)
H5 0.0563 0.6625 −0.2130 0.089*
C6 0.06934 (11) 0.6201 (5) −0.0995 (2) 0.0581 (9)
C7 0.05310 (11) 0.4738 (4) −0.09624 (19) 0.0551 (9)
H7 0.0409 0.4271 −0.1401 0.066*
C8 0.05470 (11) 0.3952 (4) −0.0281 (2) 0.0571 (9)
C9 0.03850 (13) 0.2431 (5) −0.0214 (2) 0.0703 (11)
H9 0.0268 0.1922 −0.0644 0.084*
C10 0.03996 (14) 0.1718 (5) 0.0472 (3) 0.0789 (12)
H10 0.0293 0.0724 0.0507 0.095*
C11 0.05760 (14) 0.2473 (6) 0.1135 (2) 0.0798 (12)
H11 0.0583 0.1969 0.1601 0.096*
C12 0.07325 (13) 0.3910 (5) 0.1097 (2) 0.0689 (11)
H12 0.0843 0.4392 0.1538 0.083*
C13 0.07305 (11) 0.4701 (4) 0.0390 (2) 0.0578 (9)
C14 0.19756 (12) 0.7990 (4) 0.28030 (18) 0.0503 (8)
C15 0.16763 (13) 0.7107 (4) 0.3315 (2) 0.0628 (10)
H15 0.1325 0.7115 0.3271 0.075*
C16 0.18986 (15) 0.6257 (4) 0.3863 (2) 0.0716 (11)
H16 0.1697 0.5686 0.4189 0.086*
C17 0.24310 (16) 0.6224 (4) 0.3950 (2) 0.0708 (11)
H17 0.2577 0.5645 0.4334 0.085*
C18 0.27294 (14) 0.7039 (4) 0.3470 (2) 0.0638 (10)
H18 0.3079 0.7009 0.3530 0.077*
C19 0.25146 (12) 0.7941 (4) 0.28769 (18) 0.0514 (8)
C20 0.28036 (11) 0.8773 (4) 0.23658 (18) 0.0524 (8)
H20 0.3155 0.8749 0.2398 0.063*
C21 0.25709 (12) 0.9640 (4) 0.18072 (18) 0.0504 (8)
C22 0.28402 (14) 1.0520 (4) 0.1261 (2) 0.0639 (10)
H22 0.3192 1.0524 0.1271 0.077*
C23 0.25950 (17) 1.1351 (4) 0.0727 (2) 0.0737 (11)
H23 0.2779 1.1914 0.0376 0.088*
C24 0.20596 (17) 1.1363 (4) 0.0705 (2) 0.0734 (11)
H24 0.1893 1.1932 0.0336 0.088*
C25 0.17860 (13) 1.0551 (4) 0.1217 (2) 0.0632 (10)
H25 0.1434 1.0584 0.1199 0.076*
C26 0.20288 (12) 0.9648 (4) 0.17826 (18) 0.0514 (8)
N1 0.08930 (10) 0.6160 (4) 0.03670 (17) 0.0675 (9)
N2 0.17409 (9) 0.8829 (3) 0.22676 (15) 0.0528 (7)
O1 0.0000 0.3361 (6) −0.2500 0.1183 (16)
O2 0.07381 (11) 0.8227 (5) 0.17081 (17) 0.1234 (14)
H2A 0.0499 0.9004 0.2031 0.137 (18)*
H2B 0.1071 0.8385 0.1869 0.137 (18)*
H1 −0.0308 (14) 0.280 (6) −0.248 (4) 0.205*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0437 (18) 0.066 (2) 0.064 (2) 0.0044 (17) 0.0016 (16) −0.010 (2)
C2 0.065 (2) 0.075 (3) 0.084 (3) −0.003 (2) 0.015 (2) −0.021 (3)
C3 0.074 (3) 0.071 (3) 0.110 (3) −0.002 (2) 0.029 (3) −0.009 (3)
C4 0.077 (3) 0.095 (4) 0.080 (3) 0.006 (3) 0.017 (2) 0.008 (3)
C5 0.066 (2) 0.093 (3) 0.064 (2) −0.002 (2) 0.0025 (18) −0.005 (2)
C6 0.0389 (17) 0.073 (3) 0.063 (2) 0.0082 (17) 0.0009 (15) −0.012 (2)
C7 0.0434 (18) 0.068 (2) 0.054 (2) 0.0046 (18) −0.0042 (15) −0.0172 (19)
C8 0.0383 (17) 0.062 (2) 0.071 (2) 0.0124 (17) −0.0010 (16) −0.016 (2)
C9 0.056 (2) 0.069 (3) 0.086 (3) 0.005 (2) 0.0002 (19) −0.016 (2)
C10 0.058 (2) 0.067 (3) 0.112 (3) 0.011 (2) 0.010 (2) 0.003 (3)
C11 0.060 (2) 0.097 (4) 0.082 (3) 0.017 (2) −0.002 (2) 0.010 (3)
C12 0.053 (2) 0.086 (3) 0.068 (3) 0.010 (2) −0.0068 (18) −0.003 (2)
C13 0.0365 (17) 0.071 (3) 0.066 (2) 0.0093 (17) −0.0025 (15) −0.011 (2)
C14 0.0470 (18) 0.047 (2) 0.0574 (19) 0.0011 (16) 0.0037 (16) −0.0130 (17)
C15 0.054 (2) 0.063 (2) 0.072 (2) −0.0028 (19) 0.0115 (18) −0.010 (2)
C16 0.087 (3) 0.059 (3) 0.069 (2) −0.006 (2) 0.013 (2) −0.003 (2)
C17 0.087 (3) 0.063 (3) 0.063 (2) 0.002 (2) −0.008 (2) −0.003 (2)
C18 0.063 (2) 0.063 (2) 0.066 (2) 0.008 (2) −0.0122 (19) −0.009 (2)
C19 0.0486 (18) 0.049 (2) 0.0570 (19) 0.0012 (16) −0.0049 (16) −0.0135 (18)
C20 0.0380 (17) 0.054 (2) 0.065 (2) −0.0018 (16) −0.0014 (15) −0.0157 (19)
C21 0.0512 (18) 0.0441 (19) 0.0560 (19) −0.0004 (16) 0.0004 (16) −0.0157 (17)
C22 0.064 (2) 0.061 (2) 0.066 (2) −0.0080 (19) 0.0095 (19) −0.014 (2)
C23 0.099 (3) 0.058 (3) 0.065 (2) −0.011 (2) 0.011 (2) −0.005 (2)
C24 0.095 (3) 0.059 (2) 0.066 (2) −0.001 (2) −0.015 (2) −0.005 (2)
C25 0.060 (2) 0.057 (2) 0.073 (2) 0.0022 (19) −0.0128 (19) −0.011 (2)
C26 0.0475 (18) 0.047 (2) 0.060 (2) 0.0032 (16) −0.0039 (16) −0.0153 (18)
N1 0.0478 (16) 0.082 (2) 0.073 (2) 0.0054 (16) −0.0043 (14) −0.0156 (19)
N2 0.0406 (15) 0.0505 (17) 0.0672 (17) 0.0005 (13) −0.0006 (13) −0.0101 (15)
O1 0.077 (3) 0.118 (4) 0.160 (4) 0.000 0.014 (3) 0.000
O2 0.0619 (18) 0.204 (4) 0.104 (2) −0.034 (2) −0.0056 (17) −0.013 (3)

Geometric parameters (Å, °)

C1—C2 1.416 (5) C14—N2 1.348 (4)
C1—C6 1.430 (5) C15—H15 0.9300
C1—N1 1.365 (4) C15—C16 1.354 (5)
C2—H2 0.9300 C16—H16 0.9300
C2—C3 1.362 (5) C16—C17 1.414 (5)
C3—H3 0.9300 C17—H17 0.9300
C3—C4 1.414 (6) C17—C18 1.359 (5)
C4—H4 0.9300 C18—H18 0.9300
C4—C5 1.350 (6) C18—C19 1.429 (4)
C5—H5 0.9300 C19—C20 1.389 (4)
C5—C6 1.425 (5) C20—H20 0.9300
C6—C7 1.371 (5) C20—C21 1.388 (4)
C7—H7 0.9300 C21—C22 1.425 (5)
C7—C8 1.382 (5) C21—C26 1.432 (4)
C8—C9 1.423 (5) C22—H22 0.9300
C8—C13 1.434 (5) C22—C23 1.356 (5)
C9—H9 0.9300 C23—H23 0.9300
C9—C10 1.358 (5) C23—C24 1.414 (5)
C10—H10 0.9300 C24—H24 0.9300
C10—C11 1.420 (5) C24—C25 1.359 (5)
C11—H11 0.9300 C25—H25 0.9300
C11—C12 1.345 (6) C25—C26 1.426 (4)
C12—H12 0.9300 C26—N2 1.352 (4)
C12—C13 1.423 (5) O1—H1 0.954 (11)
C13—N1 1.367 (5) O2—H2A 1.093 (4)
C14—C15 1.430 (5) O2—H2B 0.933 (3)
C14—C19 1.430 (4)
C2—C1—C6 118.9 (4) N2—C14—C19 122.5 (3)
N1—C1—C2 119.3 (3) C14—C15—H15 119.7
N1—C1—C6 121.7 (3) C16—C15—C14 120.7 (3)
C1—C2—H2 119.6 C16—C15—H15 119.7
C3—C2—C1 120.8 (4) C15—C16—H16 119.4
C3—C2—H2 119.6 C15—C16—C17 121.2 (4)
C2—C3—H3 119.9 C17—C16—H16 119.4
C2—C3—C4 120.3 (4) C16—C17—H17 120.0
C4—C3—H3 119.9 C18—C17—C16 119.9 (4)
C3—C4—H4 119.6 C18—C17—H17 120.0
C5—C4—C3 120.7 (4) C17—C18—H18 119.4
C5—C4—H4 119.6 C17—C18—C19 121.2 (3)
C4—C5—H5 119.5 C19—C18—H18 119.4
C4—C5—C6 121.0 (4) C18—C19—C14 118.5 (3)
C6—C5—H5 119.5 C20—C19—C14 118.2 (3)
C5—C6—C1 118.3 (4) C20—C19—C18 123.3 (3)
C7—C6—C1 119.1 (3) C19—C20—H20 119.8
C7—C6—C5 122.6 (3) C21—C20—C19 120.4 (3)
C6—C7—H7 119.8 C21—C20—H20 119.8
C6—C7—C8 120.4 (3) C20—C21—C22 123.8 (3)
C8—C7—H7 119.8 C20—C21—C26 117.8 (3)
C7—C8—C9 122.8 (3) C22—C21—C26 118.4 (3)
C7—C8—C13 118.8 (3) C21—C22—H22 119.2
C9—C8—C13 118.4 (4) C23—C22—C21 121.5 (3)
C8—C9—H9 119.7 C23—C22—H22 119.2
C10—C9—C8 120.5 (4) C22—C23—H23 120.0
C10—C9—H9 119.7 C22—C23—C24 120.0 (4)
C9—C10—H10 119.6 C24—C23—H23 120.0
C9—C10—C11 120.7 (4) C23—C24—H24 119.7
C11—C10—H10 119.6 C25—C24—C23 120.6 (4)
C10—C11—H11 119.7 C25—C24—H24 119.7
C12—C11—C10 120.6 (4) C24—C25—H25 119.4
C12—C11—H11 119.7 C24—C25—C26 121.2 (3)
C11—C12—H12 119.6 C26—C25—H25 119.4
C11—C12—C13 120.8 (4) C25—C26—C21 118.2 (3)
C13—C12—H12 119.6 N2—C26—C21 122.7 (3)
C12—C13—C8 118.9 (4) N2—C26—C25 119.1 (3)
N1—C13—C8 121.5 (3) C13—N1—C1 118.5 (3)
N1—C13—C12 119.6 (3) C14—N2—C26 118.4 (3)
C19—C14—C15 118.5 (3) H2A—O2—H2B 107.1 (3)
N2—C14—C15 119.0 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C6–C8/C13/N1 and C1–C6 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O2—H2B···N2 0.933 (3) 1.942 (2) 2.873 (4) 175.2 (2)
C7—H7···O1 0.93 2.35 3.271 (4) 171.
O1—H1···O2i 0.95 (1) 1.98 (5) 2.777 (4) 139 (6)
C16—H16···Cg1ii 0.93 2.93 3.773 (5) 152
C18—H18···Cg2iii 0.93 2.93 3.848 (5) 168

Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1, z+1/2; (iii) −x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2255).

References

  1. Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochimica Acta, 507–508, 1–8.
  2. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Groth, P. (1919). Chem. Kristallogr. 5, 816–817.
  6. Lowde, R. D., Phillips, D. C. & Wood, R. G. (1953). Acta Cryst. 6, 553–556.
  7. Mei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099–1103.
  8. Phillips, D. C. (1954). Acta Cryst. 7, C649, abstract No. 25.
  9. Phillips, D. C. (1956). Acta Cryst. 9, 237–250.
  10. Phillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365–377.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038220/ez2255sup1.cif

e-67-o2761-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038220/ez2255Isup2.hkl

e-67-o2761-Isup2.hkl (176.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038220/ez2255Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES