Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2740. doi: 10.1107/S1600536811038463

4-[2-(4-Chloro­phen­yl)hydrazinyl­idene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Hoong-Kun Fun a,*,, Suhana Arshad a, Shobhitha Shetty b, Balakrishna Kalluraya b
PMCID: PMC3201496  PMID: 22058802

Abstract

In the title mol­ecule, C11H10ClN5OS, an intra­molecular N—H⋯O hydrogen forms an S(6) ring motif. The dihedral angle between the pyrazole ring and the benzene ring is 3.77 (8)°. In the crystal, mol­ecules are linked by N—H⋯S and N—H⋯O hydrogen bonds into layers parallel to the bc plane.

Related literature

For the biological activity and pharmacological properties of pyrazole derivatives, see: Rai et al. (2008); Girisha et al. (2010); Isloor et al. (2009). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o2740-scheme1.jpg

Experimental

Crystal data

  • C11H10ClN5OS

  • M r = 295.75

  • Monoclinic, Inline graphic

  • a = 25.0899 (17) Å

  • b = 11.6075 (9) Å

  • c = 9.0806 (6) Å

  • β = 99.516 (1)°

  • V = 2608.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.48 × 0.33 × 0.17 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.812, T max = 0.927

  • 22139 measured reflections

  • 3827 independent reflections

  • 3125 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.120

  • S = 1.04

  • 3827 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038463/lh5337sup1.cif

e-67-o2740-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038463/lh5337Isup2.hkl

e-67-o2740-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038463/lh5337Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O1 0.914 (18) 2.114 (19) 2.7903 (16) 129.9 (16)
N5—H1N5⋯S1i 0.89 (2) 2.76 (2) 3.5239 (13) 144.5 (16)
N5—H2N5⋯O1ii 0.91 (2) 2.00 (2) 2.9124 (15) 177.0 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

supplementary crystallographic information

Comment

Pyrazole derivatives are well established in the literatures as important biologically active heterocyclic compounds (Rai et al., 2008). These derivatives are the subject of many research studies due to their widespread pharmacological properties such as anti-inflammatory (Girisha et al., 2010), antipyretic, antimicrobial (Isloor et al., 2009), and antiviral activities. The widely prescribed anti-inflammatory pyrazole derivatives, celecoxib and deracoxib, are selective COX-2 inhibitors with reduced ulcerogenic side effects. The synthetic route followed for obtaining the title compound involves the diazotization of substituted anilines to give the diazonium salts followed by coupling with ethyl acetoacetate in the presence of sodium acetate to give corresponding oxobutanoate which on further reaction with thiosemicarbazide in acetic acid gave the required thioamides.

The molecular structure is shown in Fig. 1. An intramolecular N4—H1N4···O1 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the 4,5-dihydro-1H-pyrazole (N1/N2/C1–C3) ring and the phenyl (C4–C9) ring is 3.77 (8)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. The molecules are linked by intermolecular N5—H1N5···S1i and N5—H2N5···O1ii hydrogen bonds (Table 1) into layers parallel to bc plane.

Experimental

To a solution of ethyl-2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate (0.01 mol) dissolved in glacial acetic acid (20 ml), a solution of thiosemicarbazide (0.02 mol) in glacial acetic acid (25 ml) was added and the mixture was refluxed for 4 h. It was cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.89 (2)–0.912 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates an intramolecular bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent hydrogen bonds.

Crystal data

C11H10ClN5OS F(000) = 1216
Mr = 295.75 Dx = 1.506 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9651 reflections
a = 25.0899 (17) Å θ = 2.9–29.9°
b = 11.6075 (9) Å µ = 0.45 mm1
c = 9.0806 (6) Å T = 296 K
β = 99.516 (1)° Block, orange
V = 2608.2 (3) Å3 0.48 × 0.33 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3827 independent reflections
Radiation source: fine-focus sealed tube 3125 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 30.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −35→35
Tmin = 0.812, Tmax = 0.927 k = −16→16
22139 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0678P)2 + 1.0988P] where P = (Fo2 + 2Fc2)/3
3827 reflections (Δ/σ)max = 0.003
185 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.247690 (16) 0.67094 (3) 0.16327 (4) 0.04930 (13)
Cl1 0.47498 (2) 1.36700 (4) 0.93948 (6) 0.07500 (18)
O1 0.29887 (5) 0.85770 (9) 0.39231 (11) 0.0481 (3)
N1 0.30587 (5) 0.65709 (9) 0.43842 (11) 0.0376 (2)
N2 0.33273 (5) 0.58737 (10) 0.55643 (12) 0.0456 (3)
N3 0.37848 (5) 0.86126 (10) 0.67837 (13) 0.0431 (3)
N4 0.36803 (5) 0.96471 (10) 0.62440 (13) 0.0424 (3)
N5 0.26388 (6) 0.49214 (11) 0.34633 (13) 0.0489 (3)
C1 0.35437 (5) 0.77370 (11) 0.60545 (14) 0.0397 (3)
C2 0.31655 (5) 0.77385 (11) 0.46481 (13) 0.0358 (2)
C3 0.36083 (7) 0.65570 (12) 0.65135 (16) 0.0471 (3)
C4 0.39475 (5) 1.05982 (11) 0.69841 (14) 0.0389 (3)
C5 0.43223 (6) 1.04497 (13) 0.82750 (17) 0.0504 (3)
H5A 0.4408 0.9714 0.8647 0.060*
C6 0.45677 (7) 1.14060 (14) 0.90042 (19) 0.0557 (4)
H6A 0.4818 1.1317 0.9875 0.067*
C7 0.44409 (6) 1.24900 (13) 0.84375 (17) 0.0479 (3)
C8 0.40700 (6) 1.26442 (13) 0.71486 (17) 0.0510 (3)
H8A 0.3988 1.3380 0.6774 0.061*
C9 0.38221 (6) 1.16883 (12) 0.64217 (17) 0.0473 (3)
H9A 0.3571 1.1780 0.5554 0.057*
C10 0.27250 (5) 0.60195 (11) 0.32065 (13) 0.0374 (3)
C11 0.39486 (10) 0.61297 (16) 0.7902 (2) 0.0773 (6)
H11A 0.3845 0.5356 0.8097 0.116*
H11B 0.3899 0.6616 0.8724 0.116*
H11C 0.4322 0.6141 0.7782 0.116*
H1N4 0.3454 (7) 0.9766 (17) 0.536 (2) 0.052 (5)*
H1N5 0.2758 (8) 0.4615 (18) 0.435 (2) 0.060 (5)*
H2N5 0.2431 (8) 0.4515 (19) 0.272 (2) 0.064 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0633 (2) 0.0481 (2) 0.03108 (17) 0.00100 (15) −0.00811 (14) 0.00135 (12)
Cl1 0.0730 (3) 0.0509 (2) 0.0885 (4) −0.00312 (19) −0.0239 (2) −0.0250 (2)
O1 0.0625 (6) 0.0356 (5) 0.0409 (5) 0.0050 (4) −0.0071 (4) 0.0029 (4)
N1 0.0460 (6) 0.0343 (5) 0.0287 (5) −0.0019 (4) −0.0046 (4) 0.0015 (4)
N2 0.0584 (7) 0.0352 (5) 0.0371 (5) −0.0016 (5) −0.0104 (5) 0.0047 (4)
N3 0.0486 (6) 0.0387 (5) 0.0392 (5) −0.0032 (5) −0.0011 (5) −0.0034 (4)
N4 0.0485 (6) 0.0366 (5) 0.0384 (5) −0.0032 (4) −0.0034 (5) −0.0035 (4)
N5 0.0674 (8) 0.0416 (6) 0.0326 (5) −0.0111 (6) −0.0067 (5) −0.0016 (5)
C1 0.0455 (7) 0.0359 (6) 0.0343 (5) −0.0020 (5) −0.0035 (5) −0.0011 (5)
C2 0.0411 (6) 0.0342 (6) 0.0306 (5) 0.0010 (5) 0.0019 (4) −0.0003 (4)
C3 0.0566 (8) 0.0391 (6) 0.0389 (6) −0.0021 (6) −0.0118 (6) 0.0031 (5)
C4 0.0398 (6) 0.0382 (6) 0.0374 (6) −0.0020 (5) 0.0020 (5) −0.0059 (5)
C5 0.0521 (8) 0.0413 (7) 0.0515 (8) 0.0038 (6) −0.0099 (6) −0.0034 (6)
C6 0.0529 (8) 0.0523 (8) 0.0531 (8) 0.0040 (7) −0.0175 (7) −0.0083 (7)
C7 0.0438 (7) 0.0429 (7) 0.0529 (7) −0.0011 (5) −0.0037 (6) −0.0127 (6)
C8 0.0552 (8) 0.0379 (7) 0.0547 (8) −0.0012 (6) −0.0060 (6) −0.0025 (6)
C9 0.0518 (8) 0.0412 (7) 0.0431 (7) −0.0022 (6) −0.0087 (6) −0.0011 (5)
C10 0.0414 (6) 0.0404 (6) 0.0286 (5) −0.0022 (5) 0.0008 (4) −0.0036 (4)
C11 0.1033 (15) 0.0516 (9) 0.0583 (10) −0.0039 (9) −0.0415 (10) 0.0100 (8)

Geometric parameters (Å, °)

S1—C10 1.6664 (13) C1—C2 1.4597 (17)
Cl1—C7 1.7347 (14) C3—C11 1.486 (2)
O1—C2 1.2169 (16) C4—C9 1.3813 (19)
N1—C2 1.3945 (16) C4—C5 1.3870 (19)
N1—C10 1.3995 (15) C5—C6 1.384 (2)
N1—N2 1.4207 (15) C5—H5A 0.9300
N2—C3 1.2916 (18) C6—C7 1.377 (2)
N3—C1 1.3057 (17) C6—H6A 0.9300
N3—N4 1.3070 (16) C7—C8 1.381 (2)
N4—C4 1.4039 (16) C8—C9 1.385 (2)
N4—H1N4 0.912 (18) C8—H8A 0.9300
N5—C10 1.3200 (18) C9—H9A 0.9300
N5—H1N5 0.89 (2) C11—H11A 0.9600
N5—H2N5 0.91 (2) C11—H11B 0.9600
C1—C3 1.4331 (19) C11—H11C 0.9600
C2—N1—C10 130.50 (11) C6—C5—H5A 120.3
C2—N1—N2 111.74 (10) C4—C5—H5A 120.3
C10—N1—N2 117.72 (10) C7—C6—C5 119.82 (14)
C3—N2—N1 106.99 (11) C7—C6—H6A 120.1
C1—N3—N4 118.53 (12) C5—C6—H6A 120.1
N3—N4—C4 119.51 (11) C6—C7—C8 121.12 (13)
N3—N4—H1N4 121.7 (12) C6—C7—Cl1 118.55 (11)
C4—N4—H1N4 118.7 (12) C8—C7—Cl1 120.33 (12)
C10—N5—H1N5 120.4 (13) C7—C8—C9 119.12 (14)
C10—N5—H2N5 117.2 (13) C7—C8—H8A 120.4
H1N5—N5—H2N5 122.2 (19) C9—C8—H8A 120.4
N3—C1—C3 125.15 (12) C4—C9—C8 120.05 (13)
N3—C1—C2 128.49 (12) C4—C9—H9A 120.0
C3—C1—C2 106.35 (11) C8—C9—H9A 120.0
O1—C2—N1 129.93 (12) N5—C10—N1 113.67 (11)
O1—C2—C1 126.90 (12) N5—C10—S1 124.52 (10)
N1—C2—C1 103.17 (10) N1—C10—S1 121.81 (10)
N2—C3—C1 111.70 (12) C3—C11—H11A 109.5
N2—C3—C11 122.34 (14) C3—C11—H11B 109.5
C1—C3—C11 125.96 (13) H11A—C11—H11B 109.5
C9—C4—C5 120.50 (12) C3—C11—H11C 109.5
C9—C4—N4 118.80 (12) H11A—C11—H11C 109.5
C5—C4—N4 120.68 (12) H11B—C11—H11C 109.5
C6—C5—C4 119.38 (14)
C2—N1—N2—C3 −2.16 (17) C2—C1—C3—C11 −178.78 (18)
C10—N1—N2—C3 −179.95 (13) N3—N4—C4—C9 −178.31 (14)
C1—N3—N4—C4 −178.03 (13) N3—N4—C4—C5 0.3 (2)
N4—N3—C1—C3 −178.84 (15) C9—C4—C5—C6 0.5 (2)
N4—N3—C1—C2 1.4 (2) N4—C4—C5—C6 −178.13 (14)
C10—N1—C2—O1 1.0 (2) C4—C5—C6—C7 −0.5 (3)
N2—N1—C2—O1 −176.43 (14) C5—C6—C7—C8 0.2 (3)
C10—N1—C2—C1 179.99 (13) C5—C6—C7—Cl1 179.16 (14)
N2—N1—C2—C1 2.57 (15) C6—C7—C8—C9 0.1 (3)
N3—C1—C2—O1 −3.2 (2) Cl1—C7—C8—C9 −178.82 (13)
C3—C1—C2—O1 177.00 (14) C5—C4—C9—C8 −0.2 (2)
N3—C1—C2—N1 177.80 (14) N4—C4—C9—C8 178.48 (14)
C3—C1—C2—N1 −2.04 (15) C7—C8—C9—C4 −0.2 (3)
N1—N2—C3—C1 0.72 (19) C2—N1—C10—N5 −167.44 (14)
N1—N2—C3—C11 −179.63 (18) N2—N1—C10—N5 9.85 (18)
N3—C1—C3—N2 −178.98 (14) C2—N1—C10—S1 13.6 (2)
C2—C1—C3—N2 0.86 (19) N2—N1—C10—S1 −169.10 (10)
N3—C1—C3—C11 1.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H1N4···O1 0.914 (18) 2.114 (19) 2.7903 (16) 129.9 (16)
N5—H1N5···S1i 0.89 (2) 2.76 (2) 3.5239 (13) 144.5 (16)
N5—H2N5···O1ii 0.91 (2) 2.00 (2) 2.9124 (15) 177.0 (19)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5337).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644. [DOI] [PubMed]
  5. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038463/lh5337sup1.cif

e-67-o2740-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038463/lh5337Isup2.hkl

e-67-o2740-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038463/lh5337Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES