Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2796. doi: 10.1107/S1600536811039286

9-p-Tolyl-9H-carbazole-3-carbonitrile

C Ramathilagam a, N Venkatesan b, P Rajakumar b, P R Umarani c, V Manivannan d,*
PMCID: PMC3201498  PMID: 22058824

Abstract

In the title compound, C20H14N2, the carbazole ring system is essentially planar (r.m.s. deviation = 0.187 Å) and is inclined at an angle of 54.33 (4) ° with respect to the benzene ring. The crystal packing is stabilized by weak C—H⋯N and C—H⋯π inter­actions.

Related literature

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Tachibana et al. (2001); Itoigawa et al. (2000). For related structures, see: Archana et al. (2010); Velmurugan et al. (2010); Yuan et al. (2010).graphic file with name e-67-o2796-scheme1.jpg

Experimental

Crystal data

  • C20H14N2

  • M r = 282.33

  • Triclinic, Inline graphic

  • a = 8.6031 (3) Å

  • b = 8.8247 (3) Å

  • c = 10.4609 (4) Å

  • α = 80.514 (2)°

  • β = 87.499 (2)°

  • γ = 72.114 (2)°

  • V = 745.45 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.22 × 0.19 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.984, T max = 0.987

  • 13631 measured reflections

  • 3724 independent reflections

  • 2695 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.04

  • 3724 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039286/pv2449sup1.cif

e-67-o2796-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039286/pv2449Isup2.hkl

e-67-o2796-Isup2.hkl (178.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039286/pv2449Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N2i 0.93 2.57 3.434 (2) 154
C15—H15⋯Cg2ii 0.93 2.71 3.453 (1) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CR wishes to acknowledge AMET University management, India, for their kind support.

supplementary crystallographic information

Comment

Carbazole derivatives possess antioxidative (Tachibana et al., 2001), antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with the corresponding geometric parameters reported in similar structures (Archana et al., 2010; Velmurugan et al., 2010; Yuan et al., 2010). The carbazole ring system is essentially planar with maximum deviation of C9 from the least-squae plane defined by the atoms N1/C1–C12 being 0.0306 (10) Å. The mean plane of the carbazole ring system makes a dihedral angle of 54.33 (4) ° with the phenyl ring. The sum of bond angles around N1 [359.87 (10) °]indicates the sp2 hybridization state of atom N1 in the molecule. The crystal packing of the compound is stabilized by weak C8—H8···N2 hydrogen bonds and C15—H15···π interactions involving the centroid of C1–C6 ring (Table 1).

Experimental

To a stirred solution of AlCl3 (2.8 g, 2.1 mmol), in dry THF (100 ml) sodium azide (4.1 g, 6.31 mmol), and 9-p-tolyl-9H-carbazole-3-carbaldehyde (3 g, 1.05 mmol) were added and the resulting mixture was heated to gentle reflux. The progress of the reaction was monitored by TLC. The suspension gradually turned pale yellow after 5–6 h. Then excess THF was removed by distillation and the residue was diluted with 10% HCl (10 ml). The aqueous layer was extracted with CHCl3 (2x50 ml) and brine (25 ml). The organic layer was separated and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by column chromatography by elution with mixture of ethyl acetate and hexane (1:4) to give the title compound as colorless crystalline solid.(m.p 449 K).

Refinement

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 and 0.96Å for aryl and methyl type H-atoms, respectively, and Uiso(H) = 1.2 or 1.5 times Ueq(C) for aromatic or methyl H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids for the non-H atoms.

Crystal data

C20H14N2 Z = 2
Mr = 282.33 F(000) = 296
Triclinic, P1 Dx = 1.258 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6031 (3) Å Cell parameters from 3724 reflections
b = 8.8247 (3) Å θ = 2.0–28.4°
c = 10.4609 (4) Å µ = 0.08 mm1
α = 80.514 (2)° T = 295 K
β = 87.499 (2)° Block, colourless
γ = 72.114 (2)° 0.22 × 0.19 × 0.17 mm
V = 745.45 (5) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3724 independent reflections
Radiation source: fine-focus sealed tube 2695 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 0 pixels mm-1 θmax = 28.4°, θmin = 2.0°
ω and φ scans h = −11→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −11→11
Tmin = 0.984, Tmax = 0.987 l = −13→13
13631 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1087P] where P = (Fo2 + 2Fc2)/3
3724 reflections (Δ/σ)max = 0.002
200 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.15482 (15) 0.39757 (15) 0.76616 (11) 0.0428 (3)
C2 1.28283 (17) 0.27239 (16) 0.72999 (13) 0.0503 (3)
H2 1.2641 0.1969 0.6851 0.060*
C3 1.43894 (17) 0.26447 (17) 0.76330 (13) 0.0544 (3)
H3 1.5267 0.1814 0.7408 0.065*
C4 1.46875 (17) 0.37727 (17) 0.82957 (13) 0.0540 (3)
H4 1.5755 0.3684 0.8503 0.065*
C5 1.34207 (15) 0.50179 (16) 0.86478 (12) 0.0482 (3)
H5 1.3622 0.5774 0.9087 0.058*
C6 1.18294 (15) 0.51223 (14) 0.83321 (11) 0.0413 (3)
C7 1.02493 (14) 0.62392 (14) 0.85320 (11) 0.0408 (3)
C8 0.97472 (15) 0.75589 (15) 0.91712 (12) 0.0447 (3)
H8 1.0505 0.7899 0.9561 0.054*
C9 0.80848 (16) 0.83680 (15) 0.92188 (12) 0.0470 (3)
C10 0.69339 (16) 0.78683 (16) 0.86297 (13) 0.0513 (3)
H10 0.5829 0.8431 0.8670 0.062*
C11 0.74155 (16) 0.65580 (16) 0.79929 (13) 0.0497 (3)
H11 0.6653 0.6228 0.7599 0.060*
C12 0.90815 (15) 0.57363 (15) 0.79534 (11) 0.0428 (3)
C13 0.91238 (15) 0.35356 (16) 0.67085 (12) 0.0447 (3)
C14 0.81166 (17) 0.43835 (18) 0.56626 (12) 0.0531 (3)
H14 0.7938 0.5487 0.5431 0.064*
C15 0.73821 (18) 0.3594 (2) 0.49679 (13) 0.0588 (4)
H15 0.6688 0.4181 0.4282 0.071*
C16 0.76514 (18) 0.1943 (2) 0.52662 (14) 0.0582 (4)
C17 0.86723 (18) 0.11099 (18) 0.63019 (15) 0.0582 (4)
H17 0.8883 −0.0001 0.6512 0.070*
C18 0.93897 (17) 0.18914 (16) 0.70359 (13) 0.0517 (3)
H18 1.0047 0.1313 0.7745 0.062*
C19 0.6847 (3) 0.1091 (3) 0.4495 (2) 0.0915 (6)
H19A 0.5682 0.1520 0.4557 0.137*
H19B 0.7182 −0.0041 0.4832 0.137*
H19C 0.7163 0.1249 0.3603 0.137*
C20 0.75645 (17) 0.97199 (16) 0.99028 (14) 0.0537 (3)
N1 0.98705 (12) 0.43589 (13) 0.74328 (10) 0.0454 (3)
N2 0.72084 (16) 1.07784 (16) 1.04614 (14) 0.0700 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0421 (6) 0.0455 (7) 0.0405 (6) −0.0140 (5) 0.0003 (5) −0.0053 (5)
C2 0.0519 (8) 0.0486 (7) 0.0508 (7) −0.0142 (6) 0.0048 (6) −0.0122 (6)
C3 0.0440 (7) 0.0523 (8) 0.0608 (8) −0.0070 (6) 0.0063 (6) −0.0083 (6)
C4 0.0411 (7) 0.0592 (8) 0.0590 (8) −0.0140 (6) −0.0018 (6) −0.0039 (6)
C5 0.0438 (7) 0.0531 (7) 0.0482 (7) −0.0157 (6) −0.0035 (5) −0.0061 (6)
C6 0.0420 (6) 0.0432 (6) 0.0386 (6) −0.0137 (5) 0.0001 (5) −0.0049 (5)
C7 0.0397 (6) 0.0426 (6) 0.0398 (6) −0.0132 (5) −0.0003 (5) −0.0044 (5)
C8 0.0462 (7) 0.0432 (7) 0.0461 (6) −0.0154 (5) −0.0011 (5) −0.0072 (5)
C9 0.0486 (7) 0.0412 (6) 0.0489 (7) −0.0112 (5) 0.0020 (5) −0.0060 (5)
C10 0.0409 (7) 0.0484 (7) 0.0616 (8) −0.0097 (5) 0.0015 (6) −0.0079 (6)
C11 0.0413 (7) 0.0525 (7) 0.0572 (7) −0.0163 (6) −0.0021 (6) −0.0096 (6)
C12 0.0435 (7) 0.0425 (6) 0.0432 (6) −0.0143 (5) −0.0006 (5) −0.0061 (5)
C13 0.0451 (7) 0.0519 (7) 0.0417 (6) −0.0197 (6) 0.0029 (5) −0.0120 (5)
C14 0.0586 (8) 0.0568 (8) 0.0467 (7) −0.0234 (7) −0.0034 (6) −0.0040 (6)
C15 0.0592 (9) 0.0763 (10) 0.0456 (7) −0.0267 (8) −0.0038 (6) −0.0098 (7)
C16 0.0549 (8) 0.0776 (10) 0.0552 (8) −0.0319 (7) 0.0074 (6) −0.0261 (7)
C17 0.0610 (9) 0.0531 (8) 0.0678 (9) −0.0241 (7) 0.0063 (7) −0.0184 (7)
C18 0.0529 (8) 0.0509 (7) 0.0524 (7) −0.0168 (6) −0.0016 (6) −0.0085 (6)
C19 0.0912 (14) 0.1118 (16) 0.0975 (14) −0.0513 (12) −0.0035 (11) −0.0491 (12)
C20 0.0492 (7) 0.0454 (7) 0.0637 (8) −0.0097 (6) 0.0016 (6) −0.0108 (6)
N1 0.0418 (6) 0.0472 (6) 0.0496 (6) −0.0141 (5) −0.0016 (4) −0.0133 (5)
N2 0.0611 (8) 0.0583 (8) 0.0926 (10) −0.0125 (6) −0.0004 (7) −0.0279 (7)

Geometric parameters (Å, °)

C1—C2 1.3894 (18) C11—C12 1.3958 (18)
C1—N1 1.3995 (16) C11—H11 0.9300
C1—C6 1.4048 (17) C12—N1 1.3834 (16)
C2—C3 1.380 (2) C13—C18 1.3835 (18)
C2—H2 0.9300 C13—C14 1.3865 (18)
C3—C4 1.392 (2) C13—N1 1.4230 (16)
C3—H3 0.9300 C14—C15 1.3750 (19)
C4—C5 1.3761 (19) C14—H14 0.9300
C4—H4 0.9300 C15—C16 1.386 (2)
C5—C6 1.3942 (17) C15—H15 0.9300
C5—H5 0.9300 C16—C17 1.382 (2)
C6—C7 1.4434 (17) C16—C19 1.505 (2)
C7—C8 1.3829 (17) C17—C18 1.3869 (19)
C7—C12 1.4100 (17) C17—H17 0.9300
C8—C9 1.3914 (18) C18—H18 0.9300
C8—H8 0.9300 C19—H19A 0.9600
C9—C10 1.4021 (19) C19—H19B 0.9600
C9—C20 1.4356 (18) C19—H19C 0.9600
C10—C11 1.3740 (18) C20—N2 1.1386 (17)
C10—H10 0.9300
C2—C1—N1 129.38 (12) C12—C11—H11 120.9
C2—C1—C6 121.43 (12) N1—C12—C11 129.52 (12)
N1—C1—C6 109.18 (11) N1—C12—C7 109.05 (11)
C3—C2—C1 117.33 (13) C11—C12—C7 121.40 (12)
C3—C2—H2 121.3 C18—C13—C14 119.34 (12)
C1—C2—H2 121.3 C18—C13—N1 120.73 (11)
C2—C3—C4 121.90 (13) C14—C13—N1 119.93 (12)
C2—C3—H3 119.0 C15—C14—C13 120.07 (13)
C4—C3—H3 119.0 C15—C14—H14 120.0
C5—C4—C3 120.78 (13) C13—C14—H14 120.0
C5—C4—H4 119.6 C14—C15—C16 121.56 (14)
C3—C4—H4 119.6 C14—C15—H15 119.2
C4—C5—C6 118.60 (13) C16—C15—H15 119.2
C4—C5—H5 120.7 C17—C16—C15 117.77 (13)
C6—C5—H5 120.7 C17—C16—C19 121.14 (16)
C5—C6—C1 119.96 (12) C15—C16—C19 121.09 (15)
C5—C6—C7 133.56 (12) C16—C17—C18 121.52 (14)
C1—C6—C7 106.48 (11) C16—C17—H17 119.2
C8—C7—C12 119.87 (11) C18—C17—H17 119.2
C8—C7—C6 133.07 (11) C13—C18—C17 119.71 (13)
C12—C7—C6 107.03 (10) C13—C18—H18 120.1
C7—C8—C9 118.63 (11) C17—C18—H18 120.1
C7—C8—H8 120.7 C16—C19—H19A 109.5
C9—C8—H8 120.7 C16—C19—H19B 109.5
C8—C9—C10 121.09 (12) H19A—C19—H19B 109.5
C8—C9—C20 118.52 (12) C16—C19—H19C 109.5
C10—C9—C20 120.38 (12) H19A—C19—H19C 109.5
C11—C10—C9 120.90 (12) H19B—C19—H19C 109.5
C11—C10—H10 119.6 N2—C20—C9 177.51 (16)
C9—C10—H10 119.6 C12—N1—C1 108.25 (10)
C10—C11—C12 118.11 (12) C12—N1—C13 126.03 (10)
C10—C11—H11 120.9 C1—N1—C13 125.59 (10)
N1—C1—C2—C3 178.70 (12) C8—C7—C12—C11 0.94 (18)
C6—C1—C2—C3 0.40 (19) C6—C7—C12—C11 179.09 (11)
C1—C2—C3—C4 −0.5 (2) C18—C13—C14—C15 0.5 (2)
C2—C3—C4—C5 0.1 (2) N1—C13—C14—C15 −179.43 (12)
C3—C4—C5—C6 0.3 (2) C13—C14—C15—C16 −1.6 (2)
C4—C5—C6—C1 −0.38 (18) C14—C15—C16—C17 0.8 (2)
C4—C5—C6—C7 −179.43 (12) C14—C15—C16—C19 −179.72 (14)
C2—C1—C6—C5 0.02 (18) C15—C16—C17—C18 0.9 (2)
N1—C1—C6—C5 −178.58 (11) C19—C16—C17—C18 −178.53 (14)
C2—C1—C6—C7 179.31 (11) C14—C13—C18—C17 1.2 (2)
N1—C1—C6—C7 0.70 (13) N1—C13—C18—C17 −178.86 (12)
C5—C6—C7—C8 −4.1 (2) C16—C17—C18—C13 −1.9 (2)
C1—C6—C7—C8 176.79 (13) C8—C9—C20—N2 −8(4)
C5—C6—C7—C12 178.13 (13) C10—C9—C20—N2 171 (4)
C1—C6—C7—C12 −1.01 (13) C11—C12—N1—C1 −178.47 (12)
C12—C7—C8—C9 −0.38 (17) C7—C12—N1—C1 −0.55 (13)
C6—C7—C8—C9 −177.97 (12) C11—C12—N1—C13 5.6 (2)
C7—C8—C9—C10 −0.23 (19) C7—C12—N1—C13 −176.45 (11)
C7—C8—C9—C20 178.90 (11) C2—C1—N1—C12 −178.57 (12)
C8—C9—C10—C11 0.3 (2) C6—C1—N1—C12 −0.11 (13)
C20—C9—C10—C11 −178.79 (12) C2—C1—N1—C13 −2.6 (2)
C9—C10—C11—C12 0.22 (19) C6—C1—N1—C13 175.81 (11)
C10—C11—C12—N1 176.86 (12) C18—C13—N1—C12 −128.91 (14)
C10—C11—C12—C7 −0.84 (19) C14—C13—N1—C12 51.05 (17)
C8—C7—C12—N1 −177.18 (11) C18—C13—N1—C1 55.88 (17)
C6—C7—C12—N1 0.97 (13) C14—C13—N1—C1 −124.16 (14)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C8—H8···N2i 0.93 2.57 3.434 (2) 154
C15—H15···Cg2ii 0.93 2.71 3.453 (1) 137

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2449).

References

  1. Archana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1713. [DOI] [PMC free article] [PubMed]
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897. [DOI] [PubMed]
  4. Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594. [DOI] [PubMed]
  9. Velmurugan, R., Sekar, M., Chandramohan, A., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o2965. [DOI] [PMC free article] [PubMed]
  10. Yuan, M.-S., Zhao, L. & Zhang, R. (2010). Acta Cryst. E66, o1885. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039286/pv2449sup1.cif

e-67-o2796-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039286/pv2449Isup2.hkl

e-67-o2796-Isup2.hkl (178.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039286/pv2449Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES