Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2711. doi: 10.1107/S1600536811037883

4-[2-(2-Meth­oxy­phen­yl)hydrazinyl­idene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Hoong-Kun Fun a,*,, Suhana Arshad a, Shobhitha Shetty b, Balakrishna Kalluraya b
PMCID: PMC3201502  PMID: 22065021

Abstract

In the title mol­ecule, C12H13N5O2S, a bifurcated intra­molecular N—H⋯O(O) hydrogen bond forms two S(6) ring motifs. The benzene ring forms a dihedral angle of 14.36 (11)° with the pyrazole ring. In the crystal, pairs of N—H⋯S hydrogen bonds form centrosymmetric dimers, generating R 2 2(8) ring motifs, which stack along the b axis.

Related literature

For applications of pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o2711-scheme1.jpg

Experimental

Crystal data

  • C12H13N5O2S

  • M r = 291.33

  • Monoclinic, Inline graphic

  • a = 14.3207 (13) Å

  • b = 5.2003 (5) Å

  • c = 19.5919 (18) Å

  • β = 108.369 (2)°

  • V = 1384.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.61 × 0.28 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.866, T max = 0.980

  • 26169 measured reflections

  • 4567 independent reflections

  • 3273 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.187

  • S = 1.05

  • 4567 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037883/lh5336sup1.cif

e-67-o2711-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037883/lh5336Isup3.hkl

e-67-o2711-Isup3.hkl (223.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037883/lh5336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.85 (3) 2.13 (3) 2.775 (2) 133 (2)
N5—H2N5⋯O2 0.89 (3) 1.98 (3) 2.715 (3) 138 (3)
N5—H1N5⋯S1i 0.86 (3) 2.52 (3) 3.366 (2) 168 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

supplementary crystallographic information

Comment

Pyrazoles are a novel class of heterocyclic compounds possessing a wide variety of application in the agrochemical and pharmaceutical industries. Derivatives of pyrazoles are found to show good antibacterial (Rai et al., 2008), anti-inflammatory, analgesic (Isloor et al., 2009), and anticancer activities. Pyrazolines are well known and important nitrogen-containing five membered heterocyclic compounds. Several pyrazoline derivatives have been found to possess considerable biological activities which stimulated research activities in this field (Girisha et al., 2010). In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of the title compound.

In the molecular structure (Fig. 1), an intramolecular N1—H1N1···O2 and N5—H2N5···O2 hydrogen bond (Table 1) stabilize the molecular structure and forms two S(6) ring motifs (Bernstein et al., 1995). The mean planes of the benzene ring (C1–C6) and the 4,5-dihydro-1H-pyrazole ring (N3/N4/C7–C9) form a dihedral angle of 14.36 (11)°. Bond lengths (Allen et al., 1987) and angles are within normal range.

The crystal packing is shown in Fig. 2. Molecules are linked by pairs of intermolecular N5—H1N5···S1i hydrogen bonds (Table 1) to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995) and these sets of ring motifs are stacked along the b axis.

Experimental

To a solution of ethyl 2-[(2-methoxyphenyl)hydrazono]-3-oxobutanoate (0.01 mol) in glacial acetic acid (20 ml), a solution of thiosemicarbazide (0.02 mol) in glacial acetic acid (15 ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.85 (3)–0.89 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed lines indicate intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.

Crystal data

C12H13N5O2S F(000) = 608
Mr = 291.33 Dx = 1.397 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 5668 reflections
a = 14.3207 (13) Å θ = 2.2–29.2°
b = 5.2003 (5) Å µ = 0.24 mm1
c = 19.5919 (18) Å T = 296 K
β = 108.369 (2)° Plate, red
V = 1384.7 (2) Å3 0.61 × 0.28 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4567 independent reflections
Radiation source: fine-focus sealed tube 3273 reflections with I > 2σ(I)
graphite Rint = 0.061
φ and ω scans θmax = 31.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −20→20
Tmin = 0.866, Tmax = 0.980 k = −7→7
26169 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.245P] where P = (Fo2 + 2Fc2)/3
4567 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.11741 (4) 0.15498 (9) 0.09216 (3) 0.05009 (17)
O1 0.17608 (12) 1.2296 (3) −0.21073 (8) 0.0635 (4)
O2 0.15180 (10) 0.6859 (3) −0.08927 (7) 0.0512 (3)
N1 0.28202 (12) 1.0877 (3) −0.08210 (8) 0.0464 (4)
N2 0.32172 (11) 1.0371 (3) −0.01384 (8) 0.0435 (3)
N3 0.26013 (11) 0.5730 (3) 0.09587 (7) 0.0431 (3)
N4 0.19132 (10) 0.5181 (3) 0.02795 (7) 0.0402 (3)
N5 0.06446 (14) 0.2838 (4) −0.04505 (9) 0.0567 (5)
C1 0.40913 (17) 1.3986 (5) −0.08198 (11) 0.0604 (6)
H1A 0.4474 1.3460 −0.0364 0.072*
C2 0.4416 (2) 1.5936 (5) −0.11722 (13) 0.0735 (7)
H2A 0.5016 1.6737 −0.0951 0.088*
C3 0.3850 (2) 1.6686 (5) −0.18496 (12) 0.0669 (6)
H3A 0.4073 1.7994 −0.2083 0.080*
C4 0.29584 (18) 1.5529 (4) −0.21881 (11) 0.0565 (5)
H4A 0.2584 1.6049 −0.2647 0.068*
C5 0.26225 (15) 1.3592 (4) −0.18418 (9) 0.0469 (4)
C6 0.31955 (14) 1.2835 (4) −0.11518 (9) 0.0457 (4)
C7 0.28270 (13) 0.8477 (3) 0.01271 (9) 0.0405 (4)
C8 0.31221 (13) 0.7655 (4) 0.08639 (9) 0.0424 (4)
C9 0.20102 (13) 0.6833 (3) −0.02533 (9) 0.0399 (3)
C10 0.38820 (17) 0.8850 (4) 0.14794 (11) 0.0603 (6)
H10A 0.3937 0.7893 0.1909 0.090*
H10B 0.3697 1.0591 0.1538 0.090*
H10C 0.4503 0.8840 0.1389 0.090*
C11 0.12283 (13) 0.3225 (3) 0.02151 (9) 0.0398 (3)
C12 0.1117 (2) 1.3083 (6) −0.27861 (13) 0.0755 (7)
H12A 0.0572 1.1912 −0.2939 0.113*
H12B 0.1465 1.3088 −0.3132 0.113*
H12C 0.0877 1.4782 −0.2747 0.113*
H1N1 0.231 (2) 1.010 (5) −0.1081 (15) 0.081 (9)*
H1N5 0.0188 (18) 0.171 (5) −0.0500 (14) 0.060 (7)*
H2N5 0.071 (2) 0.387 (6) −0.0797 (15) 0.074 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0585 (3) 0.0470 (3) 0.0424 (3) −0.01645 (19) 0.01250 (19) 0.00532 (18)
O1 0.0680 (9) 0.0748 (10) 0.0413 (7) −0.0202 (8) 0.0081 (6) 0.0067 (7)
O2 0.0618 (8) 0.0567 (8) 0.0309 (6) −0.0155 (6) 0.0087 (5) 0.0023 (5)
N1 0.0569 (9) 0.0484 (8) 0.0337 (7) −0.0151 (7) 0.0141 (6) 0.0030 (6)
N2 0.0532 (8) 0.0441 (8) 0.0353 (7) −0.0102 (6) 0.0167 (6) 0.0015 (6)
N3 0.0509 (8) 0.0433 (8) 0.0315 (6) −0.0117 (6) 0.0077 (5) 0.0021 (5)
N4 0.0490 (7) 0.0384 (7) 0.0309 (6) −0.0117 (6) 0.0095 (5) 0.0003 (5)
N5 0.0659 (10) 0.0568 (10) 0.0396 (8) −0.0278 (9) 0.0055 (7) 0.0027 (7)
C1 0.0693 (12) 0.0694 (13) 0.0394 (9) −0.0247 (11) 0.0130 (8) 0.0099 (9)
C2 0.0822 (15) 0.0808 (16) 0.0541 (13) −0.0374 (13) 0.0167 (11) 0.0121 (11)
C3 0.0923 (16) 0.0626 (13) 0.0486 (11) −0.0257 (12) 0.0263 (11) 0.0096 (9)
C4 0.0801 (13) 0.0552 (12) 0.0364 (9) −0.0072 (10) 0.0214 (9) 0.0065 (8)
C5 0.0611 (10) 0.0479 (10) 0.0334 (8) −0.0078 (8) 0.0173 (7) −0.0015 (7)
C6 0.0605 (10) 0.0449 (9) 0.0351 (8) −0.0100 (8) 0.0202 (7) 0.0023 (7)
C7 0.0485 (8) 0.0396 (8) 0.0345 (8) −0.0097 (7) 0.0148 (6) 0.0002 (6)
C8 0.0498 (9) 0.0432 (9) 0.0330 (7) −0.0115 (7) 0.0112 (6) 0.0000 (6)
C9 0.0490 (8) 0.0382 (8) 0.0330 (7) −0.0060 (6) 0.0135 (6) 0.0011 (6)
C10 0.0682 (12) 0.0665 (13) 0.0387 (9) −0.0277 (10) 0.0060 (8) 0.0003 (9)
C11 0.0457 (8) 0.0332 (8) 0.0394 (8) −0.0054 (6) 0.0116 (6) −0.0010 (6)
C12 0.0713 (14) 0.106 (2) 0.0429 (11) −0.0109 (14) 0.0086 (10) 0.0023 (12)

Geometric parameters (Å, °)

S1—C11 1.6578 (17) C1—H1A 0.9300
O1—C5 1.357 (2) C2—C3 1.375 (3)
O1—C12 1.419 (3) C2—H2A 0.9300
O2—C9 1.229 (2) C3—C4 1.378 (3)
N1—N2 1.305 (2) C3—H3A 0.9300
N1—C6 1.402 (2) C4—C5 1.383 (3)
N1—H1N1 0.85 (3) C4—H4A 0.9300
N2—C7 1.317 (2) C5—C6 1.399 (3)
N3—C8 1.296 (2) C7—C8 1.435 (2)
N3—N4 1.4131 (18) C7—C9 1.451 (2)
N4—C11 1.391 (2) C8—C10 1.482 (2)
N4—C9 1.392 (2) C10—H10A 0.9600
N5—C11 1.324 (2) C10—H10B 0.9600
N5—H1N5 0.86 (3) C10—H10C 0.9600
N5—H2N5 0.89 (3) C12—H12A 0.9600
C1—C6 1.379 (3) C12—H12B 0.9600
C1—C2 1.387 (3) C12—H12C 0.9600
C5—O1—C12 117.38 (18) C1—C6—C5 120.59 (17)
N2—N1—C6 120.92 (16) C1—C6—N1 122.18 (17)
N2—N1—H1N1 122.0 (19) C5—C6—N1 117.23 (16)
C6—N1—H1N1 117.0 (19) N2—C7—C8 126.34 (16)
N1—N2—C7 116.97 (15) N2—C7—C9 127.67 (16)
C8—N3—N4 106.45 (13) C8—C7—C9 105.98 (14)
C11—N4—C9 128.13 (14) N3—C8—C7 111.94 (15)
C11—N4—N3 119.72 (13) N3—C8—C10 121.01 (16)
C9—N4—N3 112.12 (13) C7—C8—C10 126.96 (16)
C11—N5—H1N5 115.8 (17) O2—C9—N4 127.62 (15)
C11—N5—H2N5 118.4 (18) O2—C9—C7 128.89 (15)
H1N5—N5—H2N5 125 (2) N4—C9—C7 103.49 (14)
C6—C1—C2 119.4 (2) C8—C10—H10A 109.5
C6—C1—H1A 120.3 C8—C10—H10B 109.5
C2—C1—H1A 120.3 H10A—C10—H10B 109.5
C3—C2—C1 120.0 (2) C8—C10—H10C 109.5
C3—C2—H2A 120.0 H10A—C10—H10C 109.5
C1—C2—H2A 120.0 H10B—C10—H10C 109.5
C2—C3—C4 121.02 (19) N5—C11—N4 114.13 (15)
C2—C3—H3A 119.5 N5—C11—S1 124.15 (14)
C4—C3—H3A 119.5 N4—C11—S1 121.72 (13)
C3—C4—C5 119.66 (19) O1—C12—H12A 109.5
C3—C4—H4A 120.2 O1—C12—H12B 109.5
C5—C4—H4A 120.2 H12A—C12—H12B 109.5
O1—C5—C4 126.05 (18) O1—C12—H12C 109.5
O1—C5—C6 114.59 (16) H12A—C12—H12C 109.5
C4—C5—C6 119.36 (18) H12B—C12—H12C 109.5
C6—N1—N2—C7 −179.10 (17) N1—N2—C7—C9 1.2 (3)
C8—N3—N4—C11 −178.33 (16) N4—N3—C8—C7 −0.7 (2)
C8—N3—N4—C9 −0.3 (2) N4—N3—C8—C10 176.20 (18)
C6—C1—C2—C3 −0.7 (4) N2—C7—C8—N3 −179.65 (18)
C1—C2—C3—C4 0.1 (4) C9—C7—C8—N3 1.3 (2)
C2—C3—C4—C5 0.3 (4) N2—C7—C8—C10 3.7 (3)
C12—O1—C5—C4 −3.6 (3) C9—C7—C8—C10 −175.4 (2)
C12—O1—C5—C6 176.1 (2) C11—N4—C9—O2 −1.5 (3)
C3—C4—C5—O1 179.7 (2) N3—N4—C9—O2 −179.33 (18)
C3—C4—C5—C6 0.0 (3) C11—N4—C9—C7 178.88 (16)
C2—C1—C6—C5 0.9 (4) N3—N4—C9—C7 1.00 (19)
C2—C1—C6—N1 −179.2 (2) N2—C7—C9—O2 0.0 (3)
O1—C5—C6—C1 179.7 (2) C8—C7—C9—O2 179.03 (19)
C4—C5—C6—C1 −0.6 (3) N2—C7—C9—N4 179.64 (18)
O1—C5—C6—N1 −0.2 (3) C8—C7—C9—N4 −1.31 (19)
C4—C5—C6—N1 179.53 (19) C9—N4—C11—N5 4.3 (3)
N2—N1—C6—C1 12.2 (3) N3—N4—C11—N5 −177.95 (17)
N2—N1—C6—C5 −167.88 (17) C9—N4—C11—S1 −176.08 (14)
N1—N2—C7—C8 −177.67 (17) N3—N4—C11—S1 1.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.85 (3) 2.13 (3) 2.775 (2) 133 (2)
N5—H2N5···O2 0.89 (3) 1.98 (3) 2.715 (3) 138 (3)
N5—H1N5···S1i 0.86 (3) 2.52 (3) 3.366 (2) 168 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5336).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644. [DOI] [PubMed]
  5. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037883/lh5336sup1.cif

e-67-o2711-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037883/lh5336Isup3.hkl

e-67-o2711-Isup3.hkl (223.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037883/lh5336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES