Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):m1393. doi: 10.1107/S1600536811037275

Aqua­chloridobis(2-eth­oxy-6-formyl­phenolato-κ2 O 1,O 6)chromium(III) acetonitrile hemisolvate

Safoora Ghelenji a, Hadi Kargar b,*, Zahra Sharafi c, Reza Kia d,e
PMCID: PMC3201503  PMID: 22065117

Abstract

In the mononuclear complex mol­ecule of the title compound, [Cr(C9H9O3)2Cl(H2O)]·0.5CH3CN, the CrIII atom displays an elongated octa­hedral coordination geometry. The dihedral angle between the benzene rings is 12.27 (11)°. Adjacent complex mol­ecules are linked into dimers by O—H⋯O hydrogen bonds, generating rings of R 1 2(6) and R 1 2(5) graph-set motifs, and by aromatic π–π stacking inter­actions, with a centroid–centroid distance of 3.812 (2) Å. The crystal packing is further stabilized by inter­molecular C—H⋯N hydrogen bonds. The C and N atoms of the acetonitrile solvent mol­ecule are located on a crystallographic twofold axis.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the structures of tetra­dentate Schiff bases synthesized by our group, see: Kargar et al. (2009, 2010).graphic file with name e-67-m1393-scheme1.jpg

Experimental

Crystal data

  • [Cr(C9H9O3)2Cl(H2O)]·0.5C2H3N

  • M r = 456.32

  • Monoclinic, Inline graphic

  • a = 19.292 (3) Å

  • b = 10.1211 (10) Å

  • c = 20.953 (3) Å

  • β = 91.824 (11)°

  • V = 4089.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 291 K

  • 0.25 × 0.15 × 0.12 mm

Data collection

  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2009)] T min = 0.901, T max = 1.000

  • 9374 measured reflections

  • 4371 independent reflections

  • 2108 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.078

  • S = 0.80

  • 4371 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037275/rz2636sup1.cif

e-67-m1393-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037275/rz2636Isup2.hkl

e-67-m1393-Isup2.hkl (214.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.85 2.10 2.826 (3) 143
O1W—H1W1⋯O5i 0.85 2.28 3.007 (4) 144
O1W—H2W1⋯O3i 0.85 2.22 2.813 (3) 127
O1W—H2W1⋯O6i 0.85 2.14 2.940 (4) 158
C7—H7A⋯N1ii 0.93 2.62 3.171 (4) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HK thanks PNU for financial support.

supplementary crystallographic information

Comment

As part of our ongoing study of potential tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010) derived from different substituted salicylaldehydes, we have determined the crystal structure of the title compound, which was obtained by the reaction of chromium(III) chloride hexahydrate with 3-ethoxysalicylaldehyde in acetonitrile.

The asymmetric unit of the title compound, Fig. 1, comprises one mononuclear complex molecule and one half of an acetonitrile solvent molecule, whose C and N atoms are located on a crystallographic twofold axis. In the complex molecule, the metal atom displays an elongated octahedral coordination geometry. The dihedral angles between the substituted benzene rings is 12.27 (11)°. Strong intermolecular O—H···O hydrogen bonds (Table 1) link adjacent complex molecules into dimers, generating rings of R21(6) and R21(5) graph set motifs (Bernstein et al., 1995). In the dimers, aromatic π–π stacking interactions with centroid-to-centroid distance of 3.812 (2) Å are observed (Table 1). The crystal packing (Fig. 2) is further stabilized by C—H···N hydrogen bonds involving the acetonitrile molecule.

Experimental

The title compound was synthesized by adding 3-ethoxy-salicylaldehyde (4 mmol) to a solution of CrCl3. 6H2O (2 mmol) in acetonitrile (50 ml). The mixture was refluxed with stirring for 3 h. The resultant dark-green solution was filtered and single crystals suitable for X-ray structure determination were grown from the solution by slow evaporation of the solvent at room temperature over several days.

Refinement

H atoms of the water molecule were located in a difference Fourier map, first restraied to a distance of 0.85 (1)Å and then constrained to refine with the parent atom with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically with C—H = 0.93 – 0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The acetonitrile solvent is disordered about a crystallographic twofold rotation axis.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the a axis. Intermolecular hydrogen interactions are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

[Cr(C9H9O3)2Cl(H2O)]·0.5C2H3N F(000) = 1888
Mr = 456.32 Dx = 1.482 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1749 reflections
a = 19.292 (3) Å θ = 2.2–29.5°
b = 10.1211 (10) Å µ = 0.73 mm1
c = 20.953 (3) Å T = 291 K
β = 91.824 (11)° Block, dark-green
V = 4089.1 (10) Å3 0.25 × 0.15 × 0.12 mm
Z = 8

Data collection

Stoe IPDS 2T Image Plate diffractometer 4371 independent reflections
Radiation source: fine-focus sealed tube 2108 reflections with I > 2σ(I)
graphite Rint = 0.070
Detector resolution: 0.15 mm pixels mm-1 θmax = 27.0°, θmin = 1.9°
ω scans h = −24→24
Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2009)] k = −11→12
Tmin = 0.901, Tmax = 1.000 l = −23→26
9374 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0193P)2] where P = (Fo2 + 2Fc2)/3
4371 reflections (Δ/σ)max = 0.001
261 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cr1 0.64593 (2) 1.32691 (7) 0.04499 (3) 0.03258 (17)
Cl1 0.61724 (4) 1.48966 (12) 0.11688 (5) 0.0500 (3)
O1 0.72440 (10) 1.2660 (3) 0.09641 (12) 0.0352 (7)
O2 0.58449 (11) 1.2011 (3) 0.08794 (13) 0.0421 (8)
O3 0.70720 (10) 1.4377 (3) −0.00154 (12) 0.0343 (7)
O4 0.56652 (10) 1.3822 (3) −0.01146 (13) 0.0395 (7)
O5 0.84236 (11) 1.2384 (3) 0.15669 (13) 0.0506 (8)
O6 0.80992 (11) 1.5786 (3) −0.04008 (14) 0.0460 (8)
C1 0.72533 (16) 1.1870 (4) 0.14529 (18) 0.0325 (9)
C2 0.78879 (17) 1.1670 (4) 0.18084 (19) 0.0386 (10)
C3 0.7924 (2) 1.0838 (5) 0.2312 (2) 0.0556 (13)
H3A 0.8347 1.0717 0.2528 0.067*
C4 0.7343 (2) 1.0156 (5) 0.2516 (2) 0.0632 (14)
H4A 0.7378 0.9601 0.2870 0.076*
C5 0.6731 (2) 1.0311 (5) 0.2196 (2) 0.0543 (13)
H5A 0.6345 0.9839 0.2323 0.065*
C6 0.66667 (19) 1.1183 (4) 0.16681 (19) 0.0385 (10)
C7 0.60077 (19) 1.1291 (4) 0.1337 (2) 0.0455 (12)
H7A 0.5658 1.0750 0.1485 0.055*
C8 0.90836 (18) 1.2297 (5) 0.1897 (2) 0.0581 (14)
H8A 0.9267 1.1407 0.1870 0.070*
H8B 0.9039 1.2522 0.2344 0.070*
C9 0.95559 (18) 1.3257 (6) 0.1581 (2) 0.0790 (17)
H9A 1.0012 1.3198 0.1775 0.118*
H9B 0.9381 1.4138 0.1630 0.118*
H9C 0.9576 1.3050 0.1135 0.118*
C10 0.69152 (17) 1.5300 (4) −0.04271 (19) 0.0330 (10)
C11 0.74590 (19) 1.6113 (4) −0.0648 (2) 0.0415 (11)
C12 0.7323 (2) 1.7116 (5) −0.1067 (2) 0.0640 (15)
H12A 0.7684 1.7646 −0.1200 0.077*
C13 0.6644 (2) 1.7360 (5) −0.1301 (2) 0.0764 (17)
H13A 0.6555 1.8044 −0.1589 0.092*
C14 0.6121 (2) 1.6586 (5) −0.1102 (2) 0.0625 (14)
H14A 0.5671 1.6753 −0.1255 0.075*
C15 0.62361 (17) 1.5546 (4) −0.06753 (19) 0.0381 (11)
C16 0.56650 (17) 1.4756 (5) −0.04983 (19) 0.0400 (11)
H16A 0.5239 1.4965 −0.0693 0.048*
C17 0.86615 (18) 1.6679 (5) −0.0508 (2) 0.0595 (13)
H17A 0.8541 1.7563 −0.0371 0.071*
H17B 0.8761 1.6707 −0.0958 0.071*
C18 0.92803 (19) 1.6186 (5) −0.0130 (2) 0.0718 (17)
H18A 0.9666 1.6765 −0.0192 0.108*
H18B 0.9395 1.5312 −0.0269 0.108*
H18C 0.9176 1.6166 0.0315 0.108*
O1W 0.66200 (9) 1.1806 (3) −0.01853 (11) 0.0375 (7)
H1W1 0.6804 1.1980 −0.0537 0.056*
H2W1 0.6804 1.1082 −0.0071 0.056*
N1 0.5000 1.8521 (9) −0.2500 0.123 (3)
C19 0.5000 1.5944 (10) −0.2500 0.137 (4)
H19A 0.5241 1.5628 −0.2864 0.206* 0.50
H19B 0.4531 1.5628 −0.2520 0.206* 0.50
H19C 0.5229 1.5628 −0.2116 0.206* 0.50
C20 0.5000 1.7396 (12) −0.2500 0.076 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1 0.0213 (2) 0.0403 (4) 0.0361 (4) −0.0020 (3) −0.0004 (2) 0.0045 (4)
Cl1 0.0440 (5) 0.0546 (8) 0.0511 (7) 0.0016 (5) −0.0026 (5) −0.0124 (7)
O1 0.0267 (11) 0.0417 (18) 0.0369 (17) −0.0002 (11) −0.0029 (11) 0.0143 (15)
O2 0.0327 (13) 0.050 (2) 0.0435 (18) −0.0103 (13) 0.0052 (13) 0.0062 (17)
O3 0.0236 (11) 0.0380 (18) 0.0412 (17) 0.0020 (11) −0.0011 (11) 0.0118 (15)
O4 0.0241 (12) 0.052 (2) 0.0426 (18) 0.0052 (12) −0.0045 (12) 0.0019 (16)
O5 0.0360 (13) 0.067 (2) 0.0477 (18) 0.0003 (13) −0.0122 (13) 0.0142 (18)
O6 0.0334 (13) 0.0396 (18) 0.065 (2) −0.0062 (12) 0.0060 (13) 0.0103 (17)
C1 0.0390 (18) 0.030 (3) 0.029 (2) 0.0044 (19) 0.0030 (17) −0.005 (2)
C2 0.0449 (19) 0.038 (3) 0.033 (2) 0.007 (2) −0.0006 (18) 0.003 (2)
C3 0.064 (3) 0.058 (3) 0.045 (3) 0.015 (2) −0.001 (2) 0.009 (3)
C4 0.098 (4) 0.049 (3) 0.042 (3) 0.017 (3) 0.004 (3) 0.021 (3)
C5 0.071 (3) 0.042 (3) 0.050 (3) −0.006 (2) 0.018 (2) 0.008 (3)
C6 0.050 (2) 0.037 (3) 0.029 (2) −0.0024 (19) 0.008 (2) −0.001 (2)
C7 0.047 (2) 0.044 (3) 0.047 (3) −0.017 (2) 0.021 (2) −0.003 (3)
C8 0.047 (2) 0.069 (4) 0.057 (3) 0.013 (2) −0.018 (2) −0.015 (3)
C9 0.043 (2) 0.113 (5) 0.080 (4) −0.012 (3) −0.011 (2) 0.000 (4)
C10 0.0368 (19) 0.029 (2) 0.033 (2) 0.0052 (17) 0.0041 (18) −0.003 (2)
C11 0.048 (2) 0.032 (3) 0.044 (3) −0.0016 (19) 0.005 (2) 0.004 (2)
C12 0.064 (3) 0.054 (4) 0.075 (4) 0.004 (2) 0.017 (3) 0.020 (3)
C13 0.083 (3) 0.065 (4) 0.081 (4) 0.015 (3) 0.003 (3) 0.047 (3)
C14 0.061 (3) 0.066 (4) 0.059 (3) 0.017 (3) −0.011 (2) 0.015 (3)
C15 0.039 (2) 0.044 (3) 0.031 (2) 0.0149 (18) −0.0003 (18) 0.009 (2)
C16 0.0324 (19) 0.056 (3) 0.031 (3) 0.013 (2) −0.0046 (18) −0.008 (3)
C17 0.055 (2) 0.041 (3) 0.084 (4) −0.012 (2) 0.025 (2) −0.007 (3)
C18 0.045 (2) 0.072 (4) 0.098 (4) −0.022 (2) 0.006 (3) −0.023 (3)
O1W 0.0300 (11) 0.0395 (17) 0.0432 (16) 0.0016 (12) 0.0049 (11) 0.0037 (16)
N1 0.144 (6) 0.099 (8) 0.129 (8) 0.000 0.057 (5) 0.000
C19 0.216 (11) 0.097 (10) 0.100 (9) 0.000 0.009 (7) 0.000
C20 0.078 (5) 0.107 (8) 0.043 (5) 0.000 0.023 (4) 0.000

Geometric parameters (Å, °)

Cr1—O3 1.918 (2) C9—H9A 0.9600
Cr1—O1 1.931 (2) C9—H9B 0.9600
Cr1—O2 1.976 (3) C9—H9C 0.9600
Cr1—O4 1.986 (3) C10—C15 1.416 (5)
Cr1—O1W 2.021 (3) C10—C11 1.422 (5)
Cr1—Cl1 2.3112 (13) C11—C12 1.361 (6)
O1—C1 1.299 (4) C12—C13 1.406 (6)
O2—C7 1.237 (5) C12—H12A 0.9300
O3—C10 1.301 (4) C13—C14 1.354 (6)
O4—C16 1.242 (4) C13—H13A 0.9300
O5—C2 1.371 (4) C14—C15 1.395 (6)
O5—C8 1.433 (4) C14—H14A 0.9300
O6—C11 1.365 (4) C15—C16 1.420 (5)
O6—C17 1.435 (4) C16—H16A 0.9300
C1—C6 1.414 (5) C17—C18 1.497 (6)
C1—C2 1.427 (5) C17—H17A 0.9700
C2—C3 1.349 (5) C17—H17B 0.9700
C3—C4 1.395 (5) C18—H18A 0.9600
C3—H3A 0.9300 C18—H18B 0.9600
C4—C5 1.349 (6) C18—H18C 0.9600
C4—H4A 0.9300 O1W—H1W1 0.8475
C5—C6 1.418 (6) O1W—H2W1 0.8459
C5—H5A 0.9300 N1—C20 1.138 (11)
C6—C7 1.433 (5) C19—C20 1.470 (12)
C7—H7A 0.9300 C19—H19A 0.9600
C8—C9 1.501 (6) C19—H19B 0.9600
C8—H8A 0.9700 C19—H19C 0.9600
C8—H8B 0.9700
O3—Cr1—O1 89.17 (10) C8—C9—H9B 109.5
O3—Cr1—O2 175.31 (12) H9A—C9—H9B 109.5
O1—Cr1—O2 90.64 (11) C8—C9—H9C 109.5
O3—Cr1—O4 90.51 (11) H9A—C9—H9C 109.5
O1—Cr1—O4 176.86 (12) H9B—C9—H9C 109.5
O2—Cr1—O4 89.43 (11) O3—C10—C15 124.2 (3)
O3—Cr1—O1W 89.06 (10) O3—C10—C11 118.2 (3)
O1—Cr1—O1W 89.98 (10) C15—C10—C11 117.6 (4)
O2—Cr1—O1W 86.25 (10) C12—C11—O6 125.4 (4)
O4—Cr1—O1W 86.89 (10) C12—C11—C10 120.8 (4)
O3—Cr1—Cl1 94.52 (9) O6—C11—C10 113.9 (4)
O1—Cr1—Cl1 93.64 (9) C11—C12—C13 121.0 (4)
O2—Cr1—Cl1 90.16 (8) C11—C12—H12A 119.5
O4—Cr1—Cl1 89.50 (8) C13—C12—H12A 119.5
O1W—Cr1—Cl1 174.93 (6) C14—C13—C12 119.1 (5)
C1—O1—Cr1 128.9 (2) C14—C13—H13A 120.5
C7—O2—Cr1 126.3 (2) C12—C13—H13A 120.5
C10—O3—Cr1 128.5 (2) C13—C14—C15 121.9 (4)
C16—O4—Cr1 125.8 (2) C13—C14—H14A 119.0
C2—O5—C8 117.3 (3) C15—C14—H14A 119.0
C11—O6—C17 117.9 (3) C14—C15—C10 119.7 (4)
O1—C1—C6 124.3 (3) C14—C15—C16 118.9 (4)
O1—C1—C2 119.3 (3) C10—C15—C16 121.5 (4)
C6—C1—C2 116.5 (4) O4—C16—C15 127.9 (4)
C3—C2—O5 126.6 (4) O4—C16—H16A 116.1
C3—C2—C1 121.2 (4) C15—C16—H16A 116.1
O5—C2—C1 112.1 (3) O6—C17—C18 107.5 (4)
C2—C3—C4 121.8 (4) O6—C17—H17A 110.2
C2—C3—H3A 119.1 C18—C17—H17A 110.2
C4—C3—H3A 119.1 O6—C17—H17B 110.2
C5—C4—C3 119.3 (4) C18—C17—H17B 110.2
C5—C4—H4A 120.4 H17A—C17—H17B 108.5
C3—C4—H4A 120.4 C17—C18—H18A 109.5
C4—C5—C6 120.9 (4) C17—C18—H18B 109.5
C4—C5—H5A 119.6 H18A—C18—H18B 109.5
C6—C5—H5A 119.6 C17—C18—H18C 109.5
C1—C6—C5 120.3 (4) H18A—C18—H18C 109.5
C1—C6—C7 121.0 (4) H18B—C18—H18C 109.5
C5—C6—C7 118.6 (4) Cr1—O1W—H1W1 119.9
O2—C7—C6 128.3 (4) Cr1—O1W—H2W1 121.3
O2—C7—H7A 115.9 H1W1—O1W—H2W1 104.1
C6—C7—H7A 115.9 C20—C19—H19A 109.5
O5—C8—C9 106.8 (4) C20—C19—H19B 109.5
O5—C8—H8A 110.4 H19A—C19—H19B 109.5
C9—C8—H8A 110.4 C20—C19—H19C 109.5
O5—C8—H8B 110.4 H19A—C19—H19C 109.5
C9—C8—H8B 110.4 H19B—C19—H19C 109.5
H8A—C8—H8B 108.6 N1—C20—C19 180.000 (5)
C8—C9—H9A 109.5
O3—Cr1—O1—C1 175.8 (3) O1—C1—C6—C7 1.9 (6)
O2—Cr1—O1—C1 −8.9 (3) C2—C1—C6—C7 −178.6 (4)
O1W—Cr1—O1—C1 −95.1 (3) C4—C5—C6—C1 2.4 (6)
Cl1—Cr1—O1—C1 81.3 (3) C4—C5—C6—C7 178.8 (4)
O1—Cr1—O2—C7 5.5 (3) Cr1—O2—C7—C6 0.1 (6)
O4—Cr1—O2—C7 −177.6 (3) C1—C6—C7—O2 −5.5 (6)
O1W—Cr1—O2—C7 95.5 (3) C5—C6—C7—O2 178.2 (4)
Cl1—Cr1—O2—C7 −88.1 (3) C2—O5—C8—C9 −174.6 (3)
O1—Cr1—O3—C10 −169.9 (3) Cr1—O3—C10—C15 −8.8 (5)
O4—Cr1—O3—C10 13.2 (3) Cr1—O3—C10—C11 171.7 (3)
O1W—Cr1—O3—C10 100.1 (3) C17—O6—C11—C12 10.1 (6)
Cl1—Cr1—O3—C10 −76.3 (3) C17—O6—C11—C10 −169.6 (3)
O3—Cr1—O4—C16 −12.4 (3) O3—C10—C11—C12 −178.4 (4)
O2—Cr1—O4—C16 172.3 (3) C15—C10—C11—C12 2.1 (6)
O1W—Cr1—O4—C16 −101.4 (3) O3—C10—C11—O6 1.4 (5)
Cl1—Cr1—O4—C16 82.1 (3) C15—C10—C11—O6 −178.1 (3)
Cr1—O1—C1—C6 6.6 (5) O6—C11—C12—C13 179.1 (4)
Cr1—O1—C1—C2 −172.9 (3) C10—C11—C12—C13 −1.2 (7)
C8—O5—C2—C3 −3.3 (6) C11—C12—C13—C14 0.3 (8)
C8—O5—C2—C1 178.0 (3) C12—C13—C14—C15 −0.5 (8)
O1—C1—C2—C3 −178.7 (4) C13—C14—C15—C10 1.5 (7)
C6—C1—C2—C3 1.7 (6) C13—C14—C15—C16 −178.6 (5)
O1—C1—C2—O5 0.0 (5) O3—C10—C15—C14 178.2 (4)
C6—C1—C2—O5 −179.5 (3) C11—C10—C15—C14 −2.3 (6)
O5—C2—C3—C4 −179.8 (4) O3—C10—C15—C16 −1.6 (6)
C1—C2—C3—C4 −1.2 (7) C11—C10—C15—C16 177.9 (4)
C2—C3—C4—C5 1.2 (7) Cr1—O4—C16—C15 7.5 (6)
C3—C4—C5—C6 −1.8 (7) C14—C15—C16—O4 −177.8 (4)
O1—C1—C6—C5 178.2 (4) C10—C15—C16—O4 2.0 (6)
C2—C1—C6—C5 −2.3 (5) C11—O6—C17—C18 173.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O1i 0.85 2.10 2.826 (3) 143.
O1W—H1W1···O5i 0.85 2.28 3.007 (4) 144.
O1W—H2W1···O3i 0.85 2.22 2.813 (3) 127.
O1W—H2W1···O6i 0.85 2.14 2.940 (4) 158.
C7—H7A···N1ii 0.93 2.62 3.171 (4) 119
C19—H19A···Cl1iii 0.96 2.80 3.745 (3) 167

Symmetry codes: (i) −x+3/2, −y+5/2, −z; (ii) −x+1, −y+3, −z; (iii) x, −y+3, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2636).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777. [DOI] [PMC free article] [PubMed]
  4. Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stoe & Cie (2009). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037275/rz2636sup1.cif

e-67-m1393-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037275/rz2636Isup2.hkl

e-67-m1393-Isup2.hkl (214.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES