Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2545. doi: 10.1107/S160053681103532X

5-Methyl-1,2-oxazole-3-carb­oxy­lic acid

Mei-Ling Pan a,*, Yang-Hui Luo a, Jin-Feng Li a
PMCID: PMC3201508  PMID: 22065461

Abstract

In the crystal structure of the title compound, C5H5NO3, all the non-H atoms are approximately coplanar: the carb­oxy O atoms deviating by 0.013 (2) and −0.075 (2) Å from the isoxazole ring plane. In the crystal, the molecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds and the dimers stack via π–π inter­actions [centroid–centroid distance = 3.234 (2) Å].

Related literature

The title compound is a potent inhibitor of the monoamine oxidase enzyme and multidentate ligand for transition metals, see: Birk & Weihe (2009).graphic file with name e-67-o2545-scheme1.jpg

Experimental

Crystal data

  • C5H5NO3

  • M r = 127.10

  • Triclinic, Inline graphic

  • a = 4.9125 (10) Å

  • b = 5.6909 (11) Å

  • c = 10.464 (2) Å

  • α = 82.21 (3)°

  • β = 79.72 (3)°

  • γ = 78.96 (3)°

  • V = 280.96 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.975, T max = 0.975

  • 2923 measured reflections

  • 1283 independent reflections

  • 1052 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.230

  • S = 1.07

  • 1283 reflections

  • 83 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103532X/jh2316sup1.cif

e-67-o2545-sup1.cif (12.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103532X/jh2316Isup2.hkl

e-67-o2545-Isup2.hkl (63.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103532X/jh2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.98 1.68 2.650 (2) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (project 20671019).

supplementary crystallographic information

Comment

5-Methylisoxazole-3-carboxylic acid is a potent inhibitor of the monoamine oxidase enzyme and excellent ligand for transition metals (Birk, et al.,2009) as well as other derivatives of isoxazole. As part of our interest in these compounds, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. All the non-H atoms of the title compound are located almost in one plane, as the atoms O1 and O2 are shifted just ca 0.0016Å out of the isoxazole ring plane.

The title compound formed dimer via intermolecular O—H···O hydrogen bonds and the dimers packed viaπ–π stacking interactions (3.234 Å).(Fig. 2).

Experimental

The title compound was purchased commercially. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) or C—H = 0.96 Å and O—H = 0.9796 Å with Uiso(H) = 1.2Ueq(CH) and Uiso(H) = 1.5Ueq(O,CH3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A packing view down the a axis showing the three dimensionnal network.Intermolecular hydrogen bonds are shown as dashed lines. H atoms have been omitted for the sake of clarity.

Crystal data

C5H5NO3 Z = 2
Mr = 127.10 F(000) = 132
Triclinic, P1 Dx = 1.502 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.9125 (10) Å Cell parameters from 1283 reflections
b = 5.6909 (11) Å θ = 3.7–27.5°
c = 10.464 (2) Å µ = 0.13 mm1
α = 82.21 (3)° T = 293 K
β = 79.72 (3)° Prism, colourless
γ = 78.96 (3)° 0.20 × 0.20 × 0.20 mm
V = 280.96 (10) Å3

Data collection

Rigaku SCXmini diffractometer 1283 independent reflections
Radiation source: fine-focus sealed tube 1052 reflections with I > 2σ(I)
graphite Rint = 0.079
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.7°
CCD_Profile_fitting scans h = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −7→7
Tmin = 0.975, Tmax = 0.975 l = −13→13
2923 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1395P)2] where P = (Fo2 + 2Fc2)/3
1283 reflections (Δ/σ)max < 0.001
83 parameters Δρmax = 0.31 e Å3
1 restraint Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 −0.2313 (3) 0.3175 (2) 0.15660 (15) 0.0539 (5)
N1 −0.0692 (4) 0.1507 (3) 0.2343 (2) 0.0530 (6)
C2 0.0502 (4) 0.2811 (3) 0.29544 (17) 0.0401 (5)
C1 0.2432 (4) 0.1560 (3) 0.38652 (18) 0.0419 (5)
C3 −0.0274 (4) 0.5290 (3) 0.26092 (19) 0.0436 (5)
H3 0.0293 0.6551 0.2915 0.052*
C4 −0.2024 (4) 0.5436 (3) 0.17357 (18) 0.0428 (5)
O1 0.2945 (3) −0.0687 (3) 0.40024 (16) 0.0560 (5)
C5 −0.3597 (5) 0.7439 (4) 0.0956 (2) 0.0541 (6)
H5A −0.3371 0.7068 0.0071 0.081*
H5B −0.2886 0.8892 0.0971 0.081*
H5C −0.5553 0.7655 0.1323 0.081*
O2 0.3450 (3) 0.2937 (2) 0.44412 (15) 0.0551 (5)
H2 0.4849 (14) 0.1977 (10) 0.4948 (5) 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0681 (10) 0.0405 (9) 0.0617 (10) −0.0087 (7) −0.0357 (8) −0.0030 (7)
N1 0.0638 (11) 0.0374 (10) 0.0650 (12) −0.0080 (8) −0.0332 (9) −0.0017 (8)
C2 0.0447 (10) 0.0375 (10) 0.0398 (10) −0.0074 (7) −0.0116 (8) −0.0032 (8)
C1 0.0446 (10) 0.0415 (10) 0.0408 (10) −0.0082 (8) −0.0103 (8) −0.0028 (8)
C3 0.0496 (11) 0.0391 (11) 0.0455 (10) −0.0088 (8) −0.0139 (8) −0.0058 (8)
C4 0.0495 (10) 0.0362 (10) 0.0446 (10) −0.0066 (8) −0.0137 (8) −0.0036 (7)
O1 0.0646 (10) 0.0407 (9) 0.0655 (10) −0.0029 (7) −0.0291 (8) 0.0015 (7)
C5 0.0625 (13) 0.0463 (12) 0.0540 (12) −0.0031 (9) −0.0220 (10) 0.0009 (9)
O2 0.0624 (10) 0.0517 (10) 0.0581 (10) −0.0081 (8) −0.0295 (8) −0.0057 (7)

Geometric parameters (Å, °)

O3—C4 1.359 (2) C3—C4 1.347 (3)
O3—N1 1.388 (2) C3—H3 0.9300
N1—C2 1.317 (3) C4—C5 1.482 (3)
C2—C3 1.404 (3) C5—H5A 0.9600
C2—C1 1.481 (3) C5—H5B 0.9600
C1—O1 1.249 (2) C5—H5C 0.9600
C1—O2 1.270 (2) O2—H2 0.9796
C4—O3—N1 109.46 (15) C3—C4—O3 108.95 (18)
C2—N1—O3 104.75 (15) C3—C4—C5 134.7 (2)
N1—C2—C3 112.28 (18) O3—C4—C5 116.31 (18)
N1—C2—C1 118.65 (18) C4—C5—H5A 109.6
C3—C2—C1 129.06 (18) C4—C5—H5B 109.4
O1—C1—O2 125.6 (2) H5A—C5—H5B 109.5
O1—C1—C2 119.38 (18) C4—C5—H5C 109.5
O2—C1—C2 114.99 (17) H5A—C5—H5C 109.5
C4—C3—C2 104.56 (17) H5B—C5—H5C 109.5
C4—C3—H3 127.7 C1—O2—H2 109.6
C2—C3—H3 127.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.98 1.68 2.650 (2) 170.

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2316).

References

  1. Birk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766–771.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103532X/jh2316sup1.cif

e-67-o2545-sup1.cif (12.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103532X/jh2316Isup2.hkl

e-67-o2545-Isup2.hkl (63.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103532X/jh2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES