Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1439–m1440. doi: 10.1107/S1600536811038487

catena-Poly[[diaquaterbium(III)]-tetrakis(μ2-pyridine-4-carboxylato-κ2 O:O′)-[diaquaterbium(III)]-bis(μ2-pyridine-4-carboxylato-κ2 O:O′)]

Xiangfei Zhang a, Bin Zhai a,*
PMCID: PMC3201511  PMID: 22065634

Abstract

The title complex, [Tb2(C6H4NO2)6(H2O)4]n, was isolated under hydro­thermal conditions using the ligand pyridine-4-carb­oxy­lic acid (HL) and Tb2O3. The deprotonated L 2− ligands adopt bridging coordination modes. The central TbIII atom is bridged by L 2− ligands, forming a polymeric chain parallel to the a axis. Supra­molecular O—H⋯N inter­actions link the chains, building up a layer parallel to (010). O—H⋯O hydrogen bonds also occur. Two of the pyridine rings are disordered by rotation around the central C—N direction with occupancy ratios of 0.53 (1):0.47 (1).

Related literature

For the properties of metal-organic coordination polymers, see: Bradshaw et al. (2004); Singh & Roesky (2007); Rosi et al. (2002); Thirumurugan & Natarajan (2005); Thirumurugan et al. (2008); Forster & Cheetham (2002); Fan & Zhu (2007).graphic file with name e-67-m1439-scheme1.jpg

Experimental

Crystal data

  • [Tb2(C6H4NO2)6(H2O)4]

  • M r = 1122.52

  • Monoclinic, Inline graphic

  • a = 9.7008 (10) Å

  • b = 19.813 (2) Å

  • c = 11.6253 (12) Å

  • β = 112.009 (1)°

  • V = 2071.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.466, T max = 0.575

  • 11208 measured reflections

  • 4055 independent reflections

  • 2998 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.105

  • S = 1.11

  • 4055 reflections

  • 259 parameters

  • 148 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.60 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811038487/dn2711sup1.cif

e-67-m1439-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038487/dn2711Isup2.hkl

e-67-m1439-Isup2.hkl (198.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯N3i 0.84 1.96 2.787 (7) 168
O7—H72⋯N2ii 0.84 1.98 2.802 (5) 167
O8—H81⋯N1iii 0.85 2.01 2.837 (7) 163
O8—H82⋯O7iv 0.85 2.16 3.002 (5) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 21001071), the Natural Science Research Program of the Education Department of Henan Province (2010A150018) and the Youth Fund Program of Shangqiu Normal University.

supplementary crystallographic information

Comment

Nowadays the connection of metal-organic coordination polymers based on transition metals and multifunctional bridging ligands has proven to be a promising field due to their intriguing and beautiful topologies and potential functions in material chemistry (Singh & Roesky, 2007; Forster & Cheetham, 2002 ). Great effort has been devoted to prepare such materials (Rosi et al., 2002; Thirumurugan & Natarajan, 2005; Fan & Zhu, 2007; Bradshaw et al., 2004; Thirumurugan et al., 2008), for example, multidentate aromatic polycarboxylic acids including benzene-1,2-dicarboxylate, benzene-1,3-dicarboxylate, benzene-1,4-dicarboxylate, benzene-1,2,3-tricarboxylate, benzene-1,2,4-tricarboxylate, benzene-1,3,5- tricarboxylate and benzene-1,2,4,5-tetracarboxylate have been widely used for the syntheses of coordination polymers of transition metal ions, and the syntheses are mainly through the direct interaction between the metal ions and carboxylate groups to construct one-, two-, and three-dimensional networks in a variety of coordination modes. In general, carboxylate positions, functional groups and ligand conformations are important for syntheses of these hybrid materials. The ligand pyridine-4-carboxylic acid (H2L) has proven to be a good building block for constructing functional coordination polymers. On the other hand, Tb3+ complex is strongly fluorescent, having a large fluorescence quantum yield and very long fluorescence lifetime.

In compound I, each TbIII atom is bonded to six Oatoms from six different carboxylates (Tb–O = 2.424 (3)–2.491 (4) Å) and two water molecules (Tb–Ow = 2.531 (3)–2.559 (3) Å). The coordination geometry around Tb atom can also be described as a distorted square antiprism with O–Tb–O bond angles ranging from 70.52 (11) to 147.15 (11)°. Adjacent two Tb centers are connected together via four bridging carboxylates with the Tb···Tb distances of 4.349 Å, which are further extended by other two L2- ligand to generate an infinite chain (Figure 1) which develop parallel to the a axis. All carboxylate groups in (I) adopt bridging modes and the potential N-donor coordination site still remains free.

O-H···N supramolecular interactions link the chain to form layers parallel to the (0 1 0) plane (Table 1, Fig. 2). There are also O-H···O intramolecular hydrogen bonds within the chains (Table 1).

Experimental

Synthesis of [TbL3(H2O)2]n (I). A mixture of H2L (0.3 mmol), Tb2O3(0.1 mmol) and H2O (15 mL) were placed in a 25 mL Teflon-lined steel vessel and heated to 180 °C for 5 days, then cooled to room temperature. The resulting colorless block-shaped crystals of (I) were washed several times by water and diethyl ether. Elemental analysis calcd for (I) (%): C, 38.52; H, 2.87; N, 7.49. Found: C, 38.46; H, 2.94; N,7.45. Selected IR spectra for (I): ν (cm-1) = 3449 s, 1632 s, 1401 m,745 m.

Refinement

Two of the pyridine rings were disordered by slight rotation around the axial C—N bond. The occupancy factors of the two positions were refined restraining the sum of the occupancy factors to be equal to 1. The values obtained after refinement are 0.47 (1) and 0.53 (1). These values were then fixed and the anisotropic thermal parameters were introduced with EADP restraints (Sheldrick, 2008).

H atoms bound to C atoms were placed geometrically and treated as riding with C-H = 0.93 Å and Uiso = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were considered as riding on their parent O atoms.

Figures

Fig. 1.

Fig. 1.

Partial view of the polymeric chain. Ellipsoids are drawn at the 30% probability level. H atoms and one component of the disordered pyridine rings have been omitted for clarity. [Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1]

Fig. 2.

Fig. 2.

Partial packing view showing the formation of layer through O-H···N hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

[Tb2(C6H4NO2)6(H2O)4] F(000) = 1096
Mr = 1122.52 Dx = 1.800 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5467 reflections
a = 9.7008 (10) Å θ = 2.2–26.4°
b = 19.813 (2) Å µ = 3.46 mm1
c = 11.6253 (12) Å T = 293 K
β = 112.009 (1)° Block, colourless
V = 2071.6 (4) Å3 0.26 × 0.20 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4055 independent reflections
Radiation source: fine-focus sealed tube 2998 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −11→11
Tmin = 0.466, Tmax = 0.575 k = −10→24
11208 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0526P)2 + 5.420P] where P = (Fo2 + 2Fc2)/3
4055 reflections (Δ/σ)max = 0.012
259 parameters Δρmax = 0.78 e Å3
148 restraints Δρmin = −1.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The ISOR instruction are used for C16 C16' C17' C5 C5' C15 C15' C18' atoms to insolve their ADP alerts. The instructions of DFIX and DANG are used for H atoms on O7 and O8 water molecules, in order to place H atoms of water molecules in calculated positions as rigiding atoms. The SIMU and DELU instructions against C16 N3 C13 O6 C1 O2 atoms are used for insolveing their ADP alerts. In addition, the disordered C3 C4 C5 C6 and C3' C4' C5' C6' atoms are localized by the differece Fourier map, which are treated as disordered part with 0.5 occupancy. Whereas, the C15 C16 C17 C18 and C15' C16' C17' C18' atoms are treated as disordered part with free refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Tb1 0.28030 (2) 0.499202 (11) 0.50935 (2) 0.01827 (11)
O1 0.3953 (4) 0.61276 (17) 0.5299 (3) 0.0248 (8)
O2 0.5886 (4) 0.60949 (17) 0.4690 (3) 0.0270 (8)
O3 0.3869 (4) 0.49073 (17) 0.3515 (3) 0.0253 (8)
O4 0.5557 (4) 0.49956 (19) 0.2667 (4) 0.0324 (10)
O5 0.0756 (4) 0.43450 (17) 0.3615 (3) 0.0235 (8)
O6 −0.1256 (4) 0.43637 (18) 0.4071 (3) 0.0274 (8)
O7 0.1132 (4) 0.57515 (17) 0.3392 (3) 0.0262 (8)
H71 0.1377 0.6148 0.3290 0.039*
H72 0.0602 0.5633 0.2667 0.039*
O8 0.1792 (4) 0.41684 (18) 0.6284 (3) 0.0267 (8)
H81 0.2344 0.3999 0.6975 0.040*
H82 0.0949 0.4233 0.6325 0.040*
N2 0.1002 (5) 0.4546 (3) −0.1043 (4) 0.0355 (12)
C1 0.5085 (5) 0.6369 (2) 0.5182 (4) 0.0191 (10)
C2 0.5552 (6) 0.7071 (3) 0.5691 (5) 0.0263 (11)
C3 0.5412 (18) 0.7272 (6) 0.6767 (14) 0.065 (2) 0.53
H3 0.4991 0.6988 0.7183 0.078* 0.53
C4 0.5922 (18) 0.7922 (6) 0.7231 (14) 0.065 (2) 0.53
H4 0.5850 0.8049 0.7976 0.078* 0.53
N1 0.6468 (7) 0.8341 (3) 0.6704 (7) 0.0652 (19)
C5 0.6418 (18) 0.8184 (6) 0.5577 (13) 0.065 (2) 0.53
H5 0.6608 0.8519 0.5093 0.078* 0.53
C6 0.6088 (18) 0.7530 (6) 0.5098 (14) 0.065 (2) 0.53
H6 0.6236 0.7410 0.4379 0.078* 0.53
C3' 0.4669 (18) 0.7485 (7) 0.6043 (18) 0.065 (2) 0.47
H3' 0.3716 0.7349 0.5949 0.078* 0.47
C4' 0.5197 (17) 0.8116 (7) 0.6545 (18) 0.065 (2) 0.47
H4' 0.4566 0.8389 0.6778 0.078* 0.47
C5' 0.7305 (18) 0.7961 (7) 0.6254 (18) 0.065 (2) 0.47
H5' 0.8200 0.8139 0.6273 0.078* 0.47
C6' 0.6903 (17) 0.7308 (7) 0.5758 (18) 0.065 (2) 0.47
H6' 0.7527 0.7052 0.5490 0.078* 0.47
C7 0.4248 (6) 0.4912 (2) 0.2593 (5) 0.0205 (11)
C8 0.3085 (5) 0.4796 (3) 0.1332 (4) 0.0201 (10)
C9 0.3287 (7) 0.5057 (3) 0.0274 (5) 0.0286 (12)
H9A 0.4113 0.5317 0.0344 0.034*
C10 0.2195 (7) 0.4908 (3) −0.0881 (5) 0.0353 (15)
H10A 0.2319 0.5076 −0.1583 0.042*
C11 0.0841 (6) 0.4311 (3) −0.0041 (5) 0.0392 (15)
H11A 0.0013 0.4045 −0.0146 0.047*
C12 0.1823 (6) 0.4436 (3) 0.1157 (5) 0.0304 (12)
H12A 0.1626 0.4276 0.1832 0.037*
C13 −0.0423 (5) 0.4099 (2) 0.3623 (4) 0.0148 (9)
C14 −0.0838 (6) 0.3403 (3) 0.3060 (5) 0.0251 (11)
C15 −0.061 (2) 0.3205 (7) 0.2026 (15) 0.067 (2) 0.47
H15 −0.0141 0.3488 0.1647 0.080* 0.47
C16 −0.110 (2) 0.2552 (6) 0.1541 (16) 0.067 (2) 0.47
H16 −0.1138 0.2452 0.0748 0.080* 0.47
N3 −0.1491 (7) 0.2101 (3) 0.2112 (6) 0.0647 (19)
C17 −0.186 (2) 0.2304 (7) 0.3059 (16) 0.067 (2) 0.47
H17 −0.2300 0.1996 0.3416 0.080* 0.47
C18 −0.1591 (19) 0.2972 (7) 0.3543 (17) 0.067 (2) 0.47
H18 −0.1916 0.3112 0.4162 0.080* 0.47
C15' 0.0235 (16) 0.3043 (6) 0.2749 (17) 0.067 (2) 0.53
H15' 0.1159 0.3229 0.2870 0.080* 0.53
C16' −0.0161 (15) 0.2386 (6) 0.2247 (17) 0.067 (2) 0.53
H16' 0.0504 0.2144 0.2003 0.080* 0.53
C17' −0.2435 (15) 0.2459 (6) 0.2278 (17) 0.067 (2) 0.53
H17' −0.3388 0.2285 0.2064 0.080* 0.53
C18' −0.2165 (14) 0.3119 (6) 0.2774 (17) 0.067 (2) 0.53
H18' −0.2923 0.3356 0.2901 0.080* 0.53

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.01824 (16) 0.01848 (16) 0.01805 (16) −0.00263 (9) 0.00676 (11) −0.00260 (9)
O1 0.0188 (17) 0.0176 (17) 0.040 (2) −0.0057 (14) 0.0135 (16) −0.0055 (15)
O2 0.029 (2) 0.0208 (18) 0.037 (2) 0.0011 (16) 0.0197 (17) −0.0011 (16)
O3 0.034 (2) 0.031 (2) 0.0143 (17) −0.0008 (15) 0.0121 (16) −0.0015 (14)
O4 0.0171 (19) 0.060 (3) 0.0183 (19) −0.0084 (17) 0.0044 (16) −0.0052 (17)
O5 0.0218 (18) 0.0230 (18) 0.0260 (19) −0.0100 (15) 0.0092 (15) −0.0068 (15)
O6 0.0246 (18) 0.0276 (19) 0.035 (2) 0.0016 (16) 0.0164 (17) −0.0087 (17)
O7 0.0292 (19) 0.0203 (18) 0.0194 (17) −0.0051 (15) −0.0019 (15) 0.0041 (14)
O8 0.0188 (17) 0.035 (2) 0.029 (2) 0.0054 (15) 0.0126 (15) 0.0136 (16)
N2 0.029 (3) 0.053 (3) 0.017 (2) 0.008 (2) −0.001 (2) −0.008 (2)
C1 0.019 (2) 0.013 (2) 0.023 (3) −0.0017 (19) 0.004 (2) 0.0002 (18)
C2 0.021 (2) 0.023 (2) 0.032 (3) −0.008 (2) 0.006 (2) −0.007 (2)
C3 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C4 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
N1 0.069 (4) 0.037 (3) 0.097 (5) −0.030 (3) 0.041 (4) −0.040 (3)
C5 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C6 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C3' 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C4' 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C5' 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C6' 0.074 (5) 0.041 (3) 0.094 (5) −0.032 (3) 0.050 (4) −0.034 (3)
C7 0.022 (3) 0.026 (3) 0.011 (2) 0.000 (2) 0.004 (2) −0.0010 (19)
C8 0.018 (2) 0.031 (3) 0.010 (2) 0.004 (2) 0.005 (2) −0.001 (2)
C9 0.027 (3) 0.047 (3) 0.014 (2) −0.001 (2) 0.010 (2) −0.001 (2)
C10 0.036 (3) 0.056 (4) 0.012 (3) 0.012 (3) 0.007 (2) 0.001 (2)
C11 0.023 (3) 0.055 (4) 0.035 (3) −0.010 (3) 0.005 (3) −0.011 (3)
C12 0.025 (3) 0.046 (3) 0.019 (3) −0.005 (3) 0.008 (2) −0.003 (2)
C13 0.017 (2) 0.012 (2) 0.011 (2) −0.0018 (18) 0.0005 (18) −0.0014 (17)
C14 0.021 (2) 0.020 (2) 0.031 (3) −0.003 (2) 0.006 (2) −0.009 (2)
C15 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C16 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
N3 0.063 (4) 0.032 (3) 0.084 (5) −0.016 (3) 0.011 (4) −0.031 (3)
C17 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C18 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C15' 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C16' 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C17' 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)
C18' 0.061 (4) 0.039 (3) 0.108 (6) −0.021 (3) 0.041 (4) −0.043 (4)

Geometric parameters (Å, °)

Tb1—O3 2.426 (4) C6—H6 0.9300
Tb1—O6i 2.432 (3) C3'—C4' 1.393 (14)
Tb1—O5 2.446 (3) C3'—H3' 0.9300
Tb1—O2ii 2.466 (3) C4'—H4' 0.9300
Tb1—O1 2.483 (3) C5'—C6' 1.410 (14)
Tb1—O4ii 2.491 (4) C5'—H5' 0.9300
Tb1—O7 2.530 (3) C6'—H6' 0.9300
Tb1—O8 2.561 (3) C7—C8 1.495 (7)
O1—C1 1.250 (6) C8—C12 1.365 (7)
O2—C1 1.249 (5) C8—C9 1.414 (7)
O2—Tb1ii 2.466 (3) C9—C10 1.395 (8)
O3—C7 1.258 (6) C9—H9A 0.9300
O4—C7 1.250 (7) C10—H10A 0.9300
O4—Tb1ii 2.491 (4) C11—C12 1.383 (7)
O5—C13 1.247 (6) C11—H11A 0.9300
O6—C13 1.232 (6) C12—H12A 0.9300
O6—Tb1i 2.432 (3) C13—C14 1.513 (6)
O7—H71 0.8413 C14—C18' 1.329 (12)
O7—H72 0.8403 C14—C15 1.360 (13)
O8—H81 0.8508 C14—C18 1.374 (14)
O8—H82 0.8460 C14—C15' 1.415 (12)
N2—C10 1.314 (8) C15—C16 1.421 (14)
N2—C11 1.316 (8) C15—H15 0.9300
C1—C2 1.513 (7) C16—N3 1.252 (14)
C2—C3' 1.356 (13) C16—H16 0.9300
C2—C6 1.357 (12) N3—C17' 1.230 (12)
C2—C6' 1.367 (13) N3—C17 1.338 (14)
C2—C3 1.368 (12) N3—C16' 1.362 (13)
C3—C4 1.411 (13) C17—C18 1.423 (14)
C3—H3 0.9300 C17—H17 0.9300
C4—N1 1.261 (12) C18—H18 0.9300
C4—H4 0.9300 C15'—C16' 1.419 (13)
N1—C4' 1.259 (13) C15'—H15' 0.9300
N1—C5 1.331 (13) C16'—H16' 0.9300
N1—C5' 1.349 (13) C17'—C18' 1.412 (13)
C5—C6 1.401 (13) C17'—H17' 0.9300
C5—H5 0.9300 C18'—H18' 0.9300
O3—Tb1—O6i 147.12 (12) C2—C3'—H3' 120.1
O3—Tb1—O5 84.03 (12) C4'—C3'—H3' 120.1
O6i—Tb1—O5 95.50 (12) N1—C4'—C3' 124.5 (13)
O3—Tb1—O2ii 70.56 (12) N1—C4'—H4' 117.8
O6i—Tb1—O2ii 142.13 (12) C3'—C4'—H4' 117.8
O5—Tb1—O2ii 82.30 (12) N1—C5'—C6' 123.8 (12)
O3—Tb1—O1 80.33 (11) N1—C5'—H5' 118.1
O6i—Tb1—O1 78.94 (12) C6'—C5'—H5' 118.1
O5—Tb1—O1 139.44 (12) C2—C6'—C5' 116.9 (12)
O2ii—Tb1—O1 125.85 (13) C2—C6'—H6' 121.6
O3—Tb1—O4ii 120.33 (13) C5'—C6'—H6' 121.6
O6i—Tb1—O4ii 79.95 (13) O4—C7—O3 123.8 (5)
O5—Tb1—O4ii 140.54 (12) O4—C7—C8 117.5 (4)
O2ii—Tb1—O4ii 78.39 (12) O3—C7—C8 118.7 (5)
O1—Tb1—O4ii 78.61 (12) C12—C8—C9 118.1 (5)
O3—Tb1—O7 77.28 (12) C12—C8—C7 122.1 (5)
O6i—Tb1—O7 71.90 (12) C9—C8—C7 119.8 (5)
O5—Tb1—O7 69.43 (12) C10—C9—C8 117.2 (6)
O2ii—Tb1—O7 138.97 (12) C10—C9—H9A 121.4
O1—Tb1—O7 70.70 (11) C8—C9—H9A 121.4
O4ii—Tb1—O7 141.47 (12) N2—C10—C9 124.4 (5)
O3—Tb1—O8 136.28 (12) N2—C10—H10A 117.8
O6i—Tb1—O8 72.55 (12) C9—C10—H10A 117.8
O5—Tb1—O8 70.81 (12) N2—C11—C12 124.2 (5)
O2ii—Tb1—O8 71.07 (11) N2—C11—H11A 117.9
O1—Tb1—O8 140.79 (12) C12—C11—H11A 117.9
O4ii—Tb1—O8 70.46 (12) C8—C12—C11 118.9 (5)
O7—Tb1—O8 122.57 (11) C8—C12—H12A 120.5
C1—O1—Tb1 135.8 (3) C11—C12—H12A 120.5
C1—O2—Tb1ii 135.9 (3) O6—C13—O5 125.9 (4)
C7—O3—Tb1 171.2 (4) O6—C13—C14 117.5 (4)
C7—O4—Tb1ii 107.9 (3) O5—C13—C14 116.7 (4)
C13—O5—Tb1 134.8 (3) C18'—C14—C15 96.9 (10)
C13—O6—Tb1i 173.6 (3) C18'—C14—C18 39.1 (10)
Tb1—O7—H71 122.2 C15—C14—C18 118.0 (9)
Tb1—O7—H72 126.1 C18'—C14—C15' 117.3 (8)
H71—O7—H72 102.6 C15—C14—C15' 41.4 (9)
Tb1—O8—H81 122.0 C18—C14—C15' 110.2 (9)
Tb1—O8—H82 120.6 C18'—C14—C13 124.7 (7)
H81—O8—H82 106.6 C15—C14—C13 122.8 (7)
C10—N2—C11 117.1 (5) C18—C14—C13 119.0 (7)
O2—C1—O1 127.3 (5) C15'—C14—C13 117.9 (6)
O2—C1—C2 115.6 (4) C14—C15—C16 118.1 (13)
O1—C1—C2 117.1 (4) C14—C15—H15 120.9
C3'—C2—C6 98.8 (10) C16—C15—H15 120.9
C3'—C2—C6' 118.3 (8) N3—C16—C15 124.2 (14)
C6—C2—C6' 42.0 (9) N3—C16—H16 117.9
C3'—C2—C3 42.0 (9) C15—C16—H16 117.9
C6—C2—C3 117.2 (8) C17'—N3—C16 93.6 (12)
C6'—C2—C3 105.6 (10) C17'—N3—C17 41.9 (11)
C3'—C2—C1 123.0 (7) C16—N3—C17 116.6 (9)
C6—C2—C1 122.2 (7) C17'—N3—C16' 118.1 (9)
C6'—C2—C1 118.7 (7) C16—N3—C16' 46.0 (10)
C3—C2—C1 120.5 (6) C17—N3—C16' 108.1 (10)
C2—C3—C4 118.3 (11) N3—C17—C18 122.7 (13)
C2—C3—H3 120.8 N3—C17—H17 118.6
C4—C3—H3 120.8 C18—C17—H17 118.6
N1—C4—C3 124.6 (12) C14—C18—C17 117.5 (12)
N1—C4—H4 117.7 C14—C18—H18 121.3
C3—C4—H4 117.7 C17—C18—H18 121.3
C4'—N1—C4 43.1 (10) C14—C15'—C16' 117.1 (11)
C4'—N1—C5 95.7 (11) C14—C15'—H15' 121.4
C4—N1—C5 117.2 (8) C16'—C15'—H15' 121.4
C4'—N1—C5' 116.3 (9) N3—C16'—C15' 121.7 (11)
C4—N1—C5' 104.1 (10) N3—C16'—H16' 119.1
C5—N1—C5' 44.9 (10) C15'—C16'—H16' 119.1
N1—C5—C6 121.8 (12) N3—C17'—C18' 124.3 (12)
N1—C5—H5 119.1 N3—C17'—H17' 117.9
C6—C5—H5 119.1 C18'—C17'—H17' 117.9
C2—C6—C5 119.5 (11) C14—C18'—C17' 120.6 (11)
C2—C6—H6 120.2 C14—C18'—H18' 119.7
C5—C6—H6 120.2 C17'—C18'—H18' 119.7
C2—C3'—C4' 119.7 (12)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H71···N3iii 0.84 1.96 2.787 (7) 168.
O7—H72···N2iv 0.84 1.98 2.802 (5) 167.
O8—H81···N1v 0.85 2.01 2.837 (7) 163.
O8—H82···O7i 0.85 2.16 3.002 (5) 171.

Symmetry codes: (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z; (v) −x+1, y−1/2, −z+3/2; (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2711).

References

  1. Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. (2004). J. Am. Chem. Soc 126, 6106–6114. [DOI] [PubMed]
  2. Bruker (1997). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fan, S. R. & Zhu, L. G. (2007). Inorg. Chem. 46, 6785–6793. [DOI] [PubMed]
  4. Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457–459. [DOI] [PubMed]
  5. Rosi, N. L., Eddaoudi, M., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2002). CrystEngComm 4, 401–404.
  6. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Singh, S. & Roesky, H. W. (2007). Dalton Trans. pp. 1360–1370. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.
  11. Thirumurugan, A., Sanguramath, R. A. & Rao, C. N. R. (2008). Inorg. Chem. 47, 823–831. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811038487/dn2711sup1.cif

e-67-m1439-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038487/dn2711Isup2.hkl

e-67-m1439-Isup2.hkl (198.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES