Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2719. doi: 10.1107/S1600536811037378

1-Diphenyl­methyl-4-[3-(4-fluoro­benzo­yl)prop­yl]piperazine-1,4-diium dichloride monohydrate

Jing Wang a,*, Yongli Wang a, Caiqin Yang a
PMCID: PMC3201513  PMID: 22058796

Abstract

In the title compound, C27H31FN2O2+·2Cl·H2O, the piperazine ring adopts a chair conformation and both N atoms are protonated. The Cl anions form strong hydrogen bonds to these protons. O/N—H⋯Cl and C—H⋯O hydrogen bonds link the anions, cations and water of hydration into a three-dimensional network.

Related literature

For a related structure, see: Zhou & Jin (1986). For the synthesis of 1-diphenyl­methyl-4-[3-(4-fluoro­benzo­yl)prop­yl]piperazine, see: Wang et al. (2003).graphic file with name e-67-o2719-scheme1.jpg

Experimental

Crystal data

  • C27H31FN2O2+·2Cl·H2O

  • M r = 507.45

  • Monoclinic, Inline graphic

  • a = 39.2849 (14) Å

  • b = 7.3369 (3) Å

  • c = 19.5158 (7) Å

  • β = 107.773 (2)°

  • V = 5356.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.37 × 0.21 × 0.11 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.933, T max = 0.970

  • 19739 measured reflections

  • 4566 independent reflections

  • 3644 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.138

  • S = 1.03

  • 4566 reflections

  • 313 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811037378/pv2438sup1.cif

e-67-o2719-sup1.cif (24.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811037378/pv2438globalsup2.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯Cl1i 1.01 (2) 2.24 (2) 3.248 (3) 176 (2)
C6—H6A⋯O1Wii 0.93 2.55 3.397 (4) 152
C14—H14B⋯O1iii 0.97 2.38 3.148 (3) 136
N1—H1A⋯Cl2 0.91 2.09 2.990 (2) 171
O1W—H2⋯Cl2 1.01 (2) 2.20 (2) 3.207 (3) 172 (2)
N2—H2B⋯Cl1 0.91 2.18 3.070 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge financial support for this work by the Hebei Province Natural Science Fund of China (C2006001035), the Science Fund (2009148) of the Education Department and the Science Fund (20090059) of the Health Department of Hebei Province of China.

supplementary crystallographic information

Comment

The crystal structure of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine has been reported (Zhou & Jin, 1986). In this article we report the structure of its dihydrochloride monohydrate.

In the title compound (Fig. 1), the piperazine ring adopts a chair conformation with the piperizine-N atoms protonated. The Cl- anions form strong halogen hydrogen bonds to these protons. Two chlorine ions and one hydrone bridge piperazine cations through the O—H···Cl and N—H···Cl halogen hydrogen bonds result in a one-dimensional chain structure. Moreover, these hydrogen bonds, as well as C═O···H hydrogen bonds (Table 1), link the molecular moieties into a two dimensional sheet in the b-c plane. The water of hydration further consolidates the structure via hydrogen bonds of the type O—H···C. Overall, the individual molecule packs together into a three-dimensional network with a spiral structure motif (Fig. 2).

Experimental

The 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine base was synthesized according to a reported procedure (Wang et al., 2003). The title compound was prepared by passing dry hydrochloride gas (100 mg) through a solution of 200 mg base in ethanol (2 ml). The single-crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion in a solution of chloroform in which the compound was soluble by benzene acting as anti-solvent.

Refinement

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.91 Å and C—H = 0.93, 0.97 and 0.98 Å, for aryl, methylene and methyne type H-atoms, respectively, with Uiso(H) = 1.2 Ueq(C/N). H atoms of water molecule were located in difference Fourier maps and were refined freely with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound showing hydrogen bonds with dotted lines.

Crystal data

C27H31FN2O2+·2Cl·H2O F(000) = 2144
Mr = 507.45 Dx = 1.258 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 6877 reflections
a = 39.2849 (14) Å θ = 4.6–65.2°
b = 7.3369 (3) Å µ = 0.28 mm1
c = 19.5158 (7) Å T = 298 K
β = 107.773 (2)° Prismatic, colorless
V = 5356.6 (3) Å3 0.37 × 0.21 × 0.11 mm
Z = 8

Data collection

Siemens SMART CCD area-detector diffractometer 4566 independent reflections
Radiation source: fine-focus sealed tube 3644 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 24.9°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −46→44
Tmin = 0.933, Tmax = 0.970 k = −8→7
19739 measured reflections l = −22→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0742P)2 + 3.1528P] where P = (Fo2 + 2Fc2)/3
4566 reflections (Δ/σ)max < 0.001
313 parameters Δρmax = 0.31 e Å3
3 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.40283 (5) 0.3181 (3) 0.13299 (11) 0.1153 (7)
Cl1 0.113600 (17) 0.81655 (8) 0.10513 (4) 0.0702 (2)
Cl2 0.231844 (18) 1.53814 (9) 0.16249 (4) 0.0760 (2)
N1 0.19895 (4) 1.1685 (2) 0.12880 (9) 0.0468 (4)
H1A 0.2087 1.2821 0.1339 0.056*
N2 0.12309 (4) 1.2321 (2) 0.10926 (8) 0.0441 (4)
H2B 0.1166 1.1127 0.1041 0.053*
O1 0.31404 (6) 1.0374 (3) 0.04357 (12) 0.0918 (7)
O1W 0.17734 (9) 1.6776 (4) 0.24451 (15) 0.1295 (9)
C1 0.37946 (8) 0.4599 (4) 0.11920 (14) 0.0765 (8)
C2 0.38710 (7) 0.6077 (5) 0.08508 (15) 0.0792 (8)
H2A 0.4078 0.6117 0.0714 0.095*
C3 0.36369 (7) 0.7509 (4) 0.07114 (13) 0.0674 (6)
H3A 0.3688 0.8540 0.0482 0.081*
C4 0.33248 (6) 0.7454 (3) 0.09058 (11) 0.0541 (5)
C5 0.32535 (7) 0.5884 (3) 0.12420 (12) 0.0643 (6)
H5A 0.3044 0.5807 0.1368 0.077*
C6 0.34905 (8) 0.4448 (4) 0.13884 (14) 0.0771 (8)
H6A 0.3445 0.3403 0.1615 0.092*
C7 0.30841 (6) 0.9070 (3) 0.07606 (12) 0.0572 (5)
C8 0.27859 (7) 0.9051 (4) 0.10829 (17) 0.0789 (8)
H8A 0.2890 0.9003 0.1602 0.095*
H8B 0.2652 0.7931 0.0936 0.095*
C9 0.25220 (6) 1.0625 (3) 0.09051 (14) 0.0641 (6)
H9A 0.2646 1.1783 0.1017 0.077*
H9B 0.2385 1.0613 0.0399 0.077*
C10 0.22818 (6) 1.0325 (3) 0.13699 (13) 0.0596 (6)
H10A 0.2175 0.9126 0.1263 0.072*
H10B 0.2429 1.0319 0.1869 0.072*
C11 0.18253 (5) 1.1380 (3) 0.18779 (11) 0.0537 (5)
H11A 0.2003 1.1619 0.2337 0.064*
H11B 0.1754 1.0113 0.1873 0.064*
C12 0.15059 (5) 1.2567 (3) 0.18091 (11) 0.0541 (5)
H12A 0.1402 1.2264 0.2187 0.065*
H12B 0.1580 1.3833 0.1868 0.065*
C13 0.14022 (5) 1.2799 (3) 0.05275 (11) 0.0502 (5)
H13A 0.1484 1.4053 0.0591 0.060*
H13B 0.1227 1.2691 0.0055 0.060*
C14 0.17127 (5) 1.1568 (3) 0.05701 (11) 0.0506 (5)
H14A 0.1629 1.0321 0.0482 0.061*
H14B 0.1818 1.1905 0.0199 0.061*
C15 0.08987 (5) 1.3469 (3) 0.10174 (11) 0.0491 (5)
H15A 0.0973 1.4748 0.1041 0.059*
C16 0.06201 (5) 1.3197 (3) 0.02871 (11) 0.0519 (5)
C17 0.04723 (6) 1.4723 (4) −0.01065 (13) 0.0651 (6)
H17A 0.0555 1.5876 0.0063 0.078*
C18 0.02014 (7) 1.4545 (5) −0.07510 (15) 0.0835 (9)
H18A 0.0100 1.5580 −0.1008 0.100*
C19 0.00813 (7) 1.2854 (5) −0.10126 (14) 0.0836 (9)
H19A −0.0099 1.2742 −0.1449 0.100*
C20 0.02270 (7) 1.1335 (4) −0.06319 (14) 0.0786 (8)
H20A 0.0146 1.0187 −0.0810 0.094*
C21 0.04927 (6) 1.1494 (4) 0.00130 (13) 0.0667 (6)
H21A 0.0589 1.0450 0.0270 0.080*
C22 0.07512 (5) 1.3157 (3) 0.16414 (11) 0.0517 (5)
C23 0.06211 (7) 1.1488 (4) 0.17795 (13) 0.0659 (6)
H23A 0.0631 1.0490 0.1493 0.079*
C24 0.04770 (8) 1.1286 (5) 0.23378 (15) 0.0806 (8)
H24A 0.0392 1.0157 0.2427 0.097*
C25 0.04600 (8) 1.2757 (5) 0.27604 (15) 0.0833 (9)
H25A 0.0360 1.2629 0.3133 0.100*
C26 0.05902 (8) 1.4419 (5) 0.26328 (15) 0.0822 (8)
H26A 0.0579 1.5415 0.2920 0.099*
C27 0.07369 (6) 1.4609 (4) 0.20780 (13) 0.0645 (6)
H27A 0.0827 1.5733 0.1998 0.077*
H2 0.1952 (5) 1.647 (4) 0.2183 (13) 0.080*
H1 0.1574 (5) 1.726 (4) 0.2022 (12) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1138 (14) 0.1047 (15) 0.1215 (14) 0.0581 (12) 0.0270 (12) 0.0098 (11)
Cl1 0.0742 (4) 0.0398 (4) 0.0921 (5) −0.0111 (3) 0.0189 (3) 0.0043 (3)
Cl2 0.0754 (4) 0.0481 (4) 0.1010 (5) −0.0194 (3) 0.0220 (3) −0.0042 (3)
N1 0.0441 (9) 0.0382 (10) 0.0579 (9) −0.0057 (7) 0.0152 (7) 0.0007 (7)
N2 0.0423 (8) 0.0386 (9) 0.0499 (9) −0.0064 (7) 0.0121 (7) 0.0007 (7)
O1 0.1009 (14) 0.0751 (13) 0.1225 (16) 0.0187 (11) 0.0686 (13) 0.0393 (12)
O1W 0.144 (2) 0.123 (2) 0.125 (2) 0.0220 (19) 0.0457 (18) 0.0110 (17)
C1 0.0786 (17) 0.079 (2) 0.0646 (15) 0.0263 (15) 0.0118 (13) −0.0046 (13)
C2 0.0598 (14) 0.098 (2) 0.0800 (17) 0.0155 (15) 0.0208 (13) −0.0043 (16)
C3 0.0631 (14) 0.0712 (17) 0.0712 (15) 0.0020 (13) 0.0254 (12) 0.0036 (12)
C4 0.0599 (12) 0.0560 (14) 0.0480 (11) 0.0000 (10) 0.0188 (9) −0.0041 (10)
C5 0.0777 (15) 0.0558 (15) 0.0665 (14) 0.0032 (12) 0.0326 (12) −0.0030 (11)
C6 0.109 (2) 0.0569 (16) 0.0660 (15) 0.0144 (15) 0.0272 (15) 0.0042 (12)
C7 0.0627 (13) 0.0557 (14) 0.0581 (12) −0.0010 (11) 0.0255 (10) 0.0012 (11)
C8 0.0805 (17) 0.0615 (17) 0.111 (2) 0.0126 (14) 0.0531 (16) 0.0169 (15)
C9 0.0617 (13) 0.0576 (15) 0.0790 (15) 0.0048 (11) 0.0304 (12) 0.0067 (12)
C10 0.0559 (12) 0.0500 (14) 0.0749 (14) 0.0084 (10) 0.0229 (11) 0.0085 (11)
C11 0.0470 (11) 0.0611 (14) 0.0518 (11) −0.0029 (10) 0.0134 (9) 0.0033 (10)
C12 0.0461 (11) 0.0627 (14) 0.0508 (11) −0.0054 (10) 0.0108 (9) −0.0042 (10)
C13 0.0486 (11) 0.0508 (13) 0.0513 (11) −0.0047 (9) 0.0155 (9) 0.0072 (9)
C14 0.0520 (11) 0.0502 (13) 0.0511 (11) −0.0057 (9) 0.0179 (9) 0.0006 (9)
C15 0.0452 (11) 0.0420 (12) 0.0593 (12) −0.0013 (9) 0.0150 (9) 0.0017 (9)
C16 0.0440 (11) 0.0548 (14) 0.0586 (12) −0.0001 (9) 0.0182 (9) 0.0064 (10)
C17 0.0606 (13) 0.0635 (16) 0.0716 (15) 0.0045 (11) 0.0210 (11) 0.0164 (12)
C18 0.0712 (17) 0.103 (2) 0.0725 (17) 0.0185 (16) 0.0164 (14) 0.0345 (17)
C19 0.0618 (15) 0.116 (3) 0.0626 (15) 0.0045 (17) 0.0036 (12) 0.0000 (16)
C20 0.0600 (14) 0.087 (2) 0.0766 (16) −0.0051 (14) 0.0030 (13) −0.0089 (15)
C21 0.0544 (13) 0.0627 (16) 0.0728 (15) −0.0016 (11) 0.0041 (11) 0.0014 (12)
C22 0.0399 (10) 0.0559 (14) 0.0568 (12) 0.0007 (9) 0.0109 (9) 0.0013 (10)
C23 0.0673 (14) 0.0645 (16) 0.0715 (15) −0.0109 (12) 0.0296 (12) −0.0033 (12)
C24 0.0774 (17) 0.090 (2) 0.0803 (17) −0.0155 (15) 0.0334 (14) 0.0072 (16)
C25 0.0710 (17) 0.120 (3) 0.0631 (15) −0.0051 (17) 0.0271 (13) −0.0011 (16)
C26 0.0793 (18) 0.098 (2) 0.0704 (16) 0.0046 (17) 0.0243 (14) −0.0194 (15)
C27 0.0610 (13) 0.0642 (16) 0.0665 (14) −0.0005 (11) 0.0167 (11) −0.0079 (12)

Geometric parameters (Å, °)

F1—C1 1.359 (3) C11—H11B 0.9700
N1—C14 1.491 (3) C12—H12A 0.9700
N1—C10 1.493 (3) C12—H12B 0.9700
N1—C11 1.498 (3) C13—C14 1.500 (3)
N1—H1A 0.9100 C13—H13A 0.9700
N2—C12 1.494 (3) C13—H13B 0.9700
N2—C13 1.498 (2) C14—H14A 0.9700
N2—C15 1.522 (3) C14—H14B 0.9700
N2—H2B 0.9100 C15—C22 1.517 (3)
O1—C7 1.206 (3) C15—C16 1.522 (3)
O1W—H2 1.012 (16) C15—H15A 0.9800
O1W—H1 1.013 (16) C16—C17 1.381 (3)
C1—C2 1.353 (4) C16—C21 1.391 (3)
C1—C6 1.366 (4) C17—C18 1.384 (4)
C2—C3 1.368 (4) C17—H17A 0.9300
C2—H2A 0.9300 C18—C19 1.369 (4)
C3—C4 1.390 (3) C18—H18A 0.9300
C3—H3A 0.9300 C19—C20 1.365 (4)
C4—C5 1.396 (3) C19—H19A 0.9300
C4—C7 1.489 (3) C20—C21 1.373 (3)
C5—C6 1.377 (4) C20—H20A 0.9300
C5—H5A 0.9300 C21—H21A 0.9300
C6—H6A 0.9300 C22—C27 1.376 (3)
C7—C8 1.489 (3) C22—C23 1.384 (3)
C8—C9 1.519 (4) C23—C24 1.381 (4)
C8—H8A 0.9700 C23—H23A 0.9300
C8—H8B 0.9700 C24—C25 1.372 (4)
C9—C10 1.511 (3) C24—H24A 0.9300
C9—H9A 0.9700 C25—C26 1.374 (4)
C9—H9B 0.9700 C25—H25A 0.9300
C10—H10A 0.9700 C26—C27 1.380 (4)
C10—H10B 0.9700 C26—H26A 0.9300
C11—C12 1.499 (3) C27—H27A 0.9300
C11—H11A 0.9700
C14—N1—C10 112.26 (17) N2—C12—H12A 109.4
C14—N1—C11 110.60 (15) C11—C12—H12A 109.4
C10—N1—C11 108.40 (16) N2—C12—H12B 109.4
C14—N1—H1A 108.5 C11—C12—H12B 109.4
C10—N1—H1A 108.5 H12A—C12—H12B 108.0
C11—N1—H1A 108.5 N2—C13—C14 111.04 (16)
C12—N2—C13 107.56 (15) N2—C13—H13A 109.4
C12—N2—C15 112.16 (16) C14—C13—H13A 109.4
C13—N2—C15 111.36 (15) N2—C13—H13B 109.4
C12—N2—H2B 108.6 C14—C13—H13B 109.4
C13—N2—H2B 108.6 H13A—C13—H13B 108.0
C15—N2—H2B 108.6 N1—C14—C13 111.42 (17)
H2—O1W—H1 98.6 (16) N1—C14—H14A 109.3
C2—C1—F1 118.2 (3) C13—C14—H14A 109.3
C2—C1—C6 123.2 (3) N1—C14—H14B 109.3
F1—C1—C6 118.6 (3) C13—C14—H14B 109.3
C1—C2—C3 118.5 (3) H14A—C14—H14B 108.0
C1—C2—H2A 120.8 C22—C15—C16 112.97 (16)
C3—C2—H2A 120.8 C22—C15—N2 111.43 (16)
C2—C3—C4 121.2 (3) C16—C15—N2 111.58 (16)
C2—C3—H3A 119.4 C22—C15—H15A 106.8
C4—C3—H3A 119.4 C16—C15—H15A 106.8
C3—C4—C5 118.2 (2) N2—C15—H15A 106.8
C3—C4—C7 119.1 (2) C17—C16—C21 118.3 (2)
C5—C4—C7 122.6 (2) C17—C16—C15 118.3 (2)
C6—C5—C4 120.6 (2) C21—C16—C15 123.32 (19)
C6—C5—H5A 119.7 C16—C17—C18 120.3 (3)
C4—C5—H5A 119.7 C16—C17—H17A 119.8
C1—C6—C5 118.3 (3) C18—C17—H17A 119.8
C1—C6—H6A 120.9 C19—C18—C17 120.4 (3)
C5—C6—H6A 120.9 C19—C18—H18A 119.8
O1—C7—C4 121.6 (2) C17—C18—H18A 119.8
O1—C7—C8 121.6 (2) C20—C19—C18 119.8 (2)
C4—C7—C8 116.6 (2) C20—C19—H19A 120.1
C7—C8—C9 117.8 (2) C18—C19—H19A 120.1
C7—C8—H8A 107.9 C19—C20—C21 120.3 (3)
C9—C8—H8A 107.9 C19—C20—H20A 119.8
C7—C8—H8B 107.9 C21—C20—H20A 119.8
C9—C8—H8B 107.9 C20—C21—C16 120.8 (2)
H8A—C8—H8B 107.2 C20—C21—H21A 119.6
C10—C9—C8 105.03 (19) C16—C21—H21A 119.6
C10—C9—H9A 110.7 C27—C22—C23 118.5 (2)
C8—C9—H9A 110.7 C27—C22—C15 118.5 (2)
C10—C9—H9B 110.7 C23—C22—C15 123.0 (2)
C8—C9—H9B 110.7 C24—C23—C22 120.9 (3)
H9A—C9—H9B 108.8 C24—C23—H23A 119.6
N1—C10—C9 116.04 (19) C22—C23—H23A 119.6
N1—C10—H10A 108.3 C25—C24—C23 119.8 (3)
C9—C10—H10A 108.3 C25—C24—H24A 120.1
N1—C10—H10B 108.3 C23—C24—H24A 120.1
C9—C10—H10B 108.3 C24—C25—C26 120.0 (3)
H10A—C10—H10B 107.4 C24—C25—H25A 120.0
N1—C11—C12 112.92 (17) C26—C25—H25A 120.0
N1—C11—H11A 109.0 C25—C26—C27 120.0 (3)
C12—C11—H11A 109.0 C25—C26—H26A 120.0
N1—C11—H11B 109.0 C27—C26—H26A 120.0
C12—C11—H11B 109.0 C22—C27—C26 120.9 (3)
H11A—C11—H11B 107.8 C22—C27—H27A 119.6
N2—C12—C11 111.11 (17) C26—C27—H27A 119.6
F1—C1—C2—C3 −179.9 (2) N2—C13—C14—N1 −59.1 (2)
C6—C1—C2—C3 1.7 (4) C12—N2—C15—C22 −52.4 (2)
C1—C2—C3—C4 −0.8 (4) C13—N2—C15—C22 −172.96 (17)
C2—C3—C4—C5 −0.7 (4) C12—N2—C15—C16 −179.67 (17)
C2—C3—C4—C7 178.3 (2) C13—N2—C15—C16 59.7 (2)
C3—C4—C5—C6 1.3 (3) C22—C15—C16—C17 103.2 (2)
C7—C4—C5—C6 −177.7 (2) N2—C15—C16—C17 −130.3 (2)
C2—C1—C6—C5 −1.1 (4) C22—C15—C16—C21 −73.2 (3)
F1—C1—C6—C5 −179.5 (2) N2—C15—C16—C21 53.3 (3)
C4—C5—C6—C1 −0.4 (4) C21—C16—C17—C18 0.9 (3)
C3—C4—C7—O1 5.1 (4) C15—C16—C17—C18 −175.7 (2)
C5—C4—C7—O1 −176.0 (2) C16—C17—C18—C19 −1.2 (4)
C3—C4—C7—C8 −170.5 (2) C17—C18—C19—C20 0.7 (5)
C5—C4—C7—C8 8.4 (3) C18—C19—C20—C21 0.2 (5)
O1—C7—C8—C9 8.1 (4) C19—C20—C21—C16 −0.5 (4)
C4—C7—C8—C9 −176.2 (2) C17—C16—C21—C20 0.0 (4)
C7—C8—C9—C10 −173.9 (2) C15—C16—C21—C20 176.4 (2)
C14—N1—C10—C9 68.0 (3) C16—C15—C22—C27 −115.0 (2)
C11—N1—C10—C9 −169.6 (2) N2—C15—C22—C27 118.5 (2)
C8—C9—C10—N1 −178.9 (2) C16—C15—C22—C23 63.2 (3)
C14—N1—C11—C12 −51.4 (2) N2—C15—C22—C23 −63.4 (3)
C10—N1—C11—C12 −174.83 (18) C27—C22—C23—C24 0.6 (4)
C13—N2—C12—C11 −59.0 (2) C15—C22—C23—C24 −177.5 (2)
C15—N2—C12—C11 178.27 (17) C22—C23—C24—C25 0.4 (4)
N1—C11—C12—N2 55.8 (2) C23—C24—C25—C26 −0.8 (4)
C12—N2—C13—C14 61.0 (2) C24—C25—C26—C27 0.2 (4)
C15—N2—C13—C14 −175.72 (16) C23—C22—C27—C26 −1.2 (4)
C10—N1—C14—C13 173.75 (17) C15—C22—C27—C26 177.0 (2)
C11—N1—C14—C13 52.5 (2) C25—C26—C27—C22 0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1···Cl1i 1.01 (2) 2.24 (2) 3.248 (3) 176 (2)
C15—H15A···Cl1i 0.98 2.59 3.565 (2) 177
C6—H6A···O1Wii 0.93 2.55 3.397 (4) 152
C10—H10B···Cl2iii 0.97 2.80 3.746 (3) 165
C14—H14B···O1iv 0.97 2.38 3.148 (3) 136
N1—H1A···Cl2 0.91 2.09 2.990 (2) 171
O1W—H2···Cl2 1.01 (2) 2.20 (2) 3.207 (3) 172 (2)
N2—H2B···Cl1 0.91 2.18 3.070 (2) 167
C12—H12B···O1W 0.97 2.45 3.374 (4) 160
C21—H21A···Cl1 0.93 2.78 3.651 (3) 155

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−3/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2438).

References

  1. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  4. Wang, Y. L., Chen, Z. M. & Bao, C. H. (2003). Chinese Patent CN 1654461A.
  5. Zhou, G. D. & Jin, S. (1986). J. Struct. Chem. 5, 49–51.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811037378/pv2438sup1.cif

e-67-o2719-sup1.cif (24.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811037378/pv2438globalsup2.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES