Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1372. doi: 10.1107/S1600536811035252

Hexa-μ-chlorido-μ4-oxido-tetra­kis­({1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole-κN 3}copper(II))

Hui Li a,*, Hongshi Jiang a, Hong Sun a
PMCID: PMC3201516  PMID: 22065693

Abstract

The title tetra­nuclear complex, [Cu4Cl6O(C13H11N3)4], features a tetra­hedral arrangement of copper(II) ions bonded to the central O atom (site symmetry Inline graphic). Each of the six edges of the Cu4 tetra­hedron is bridged by a chloride ion (one of which has site symmetry 2), so that each copper ion is linked to the other three metal ions through the central O atom and through three separate chloride-ion bridges. The fifth coord­ination position, located on the central Cu—O axis on the outside of the cluster, is occupied by an N atom of the mono­dentate 1-(pyridin-2-ylmeth­yl)-1H-benzimidazole ligand. The resulting coordination geometry of the metal ion is a distorted trigonal bipyramid with the O and N atoms in the axial positions. The dihedral angle between the benzimidazole ring system and the pendant pyridine ring is 61.0 (2)°.

Related literature

For background to polynuclear copper halides, see: Willett (1991); Chivers et al. (2005); Li et al. (2009). graphic file with name e-67-m1372-scheme1.jpg

Experimental

Crystal data

  • [Cu4Cl6O(C13H11N3)4]

  • M r = 1319.85

  • Tetragonal, Inline graphic

  • a = 13.8532 (12) Å

  • c = 14.507 (3) Å

  • V = 2784.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 294 K

  • 0.25 × 0.23 × 0.20 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.637, T max = 0.691

  • 7149 measured reflections

  • 2467 independent reflections

  • 2178 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.062

  • S = 1.06

  • 2467 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1172 Friedel pairs

  • Flack parameter: 0.005 (15)

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035252/hb6384sup1.cif

e-67-m1372-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035252/hb6384Isup2.hkl

e-67-m1372-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.9199 (4)
Cu1—N3 1.974 (3)
Cu1—Cl1i 2.3961 (10)
Cu1—Cl1 2.4192 (10)
Cu1—Cl2 2.4263 (10)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the College Research Program of Yuncheng University (2008112) for funding.

supplementary crystallographic information

Comment

Copper(II) halide framework materials have attracted much attention for their interesting magnetic properties and structural richness (Willett et al., 1991). The most commonly employed technique to modulate the inorganic network involves the direct addition of an organic ligand as a templating reagent (Chivers et al., 2005). benzimidazole has been well used in crystal engineering, and a large number of benzimidazole ligands have been extensively studied (Li et al., 2009). The reaction of CuCl2 with the benzimidazole-pyridine ligand (L) affords a tetranuclear molecule [(Cu4O)Cl6(L)4], (I). The crystal structure was elucidated by X-ray diffraction analysis.

Experimental

To a solution of L (0.12 mmol, 25 mg) dissolved in CH3CN (9 ml), a solution of CuCl2.6H2O (0.12 mmol, 28.9 mg) in H2O (9 ml) was added under stirring in a few minutes. The solution was left to stand at room temperature. Brown blocks of (I) were obtained after several days with solvent evaporation. Yield: ~20% (based on L).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are removed for clarity. [symmetry code: (A) -y + 1, x, -z; (B) y, -x + 1, -z; (C) -x + 1, -y + 1, z].

Fig. 2.

Fig. 2.

The crystal packing for (I) viewed along the c axis.

Crystal data

[Cu4Cl6O(C13H11N3)4] Dx = 1.574 Mg m3
Mr = 1319.85 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 3492 reflections
a = 13.8532 (12) Å θ = 2.8–25.3°
c = 14.507 (3) Å µ = 1.85 mm1
V = 2784.1 (6) Å3 T = 294 K
Z = 2 Block, brown
F(000) = 1332 0.25 × 0.23 × 0.20 mm

Data collection

Rigaku Mercury CCD diffractometer 2467 independent reflections
Radiation source: fine-focus sealed tube 2178 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 9 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −14→16
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −16→14
Tmin = 0.637, Tmax = 0.691 l = −17→17
7149 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2467 reflections Δρmax = 0.34 e Å3
170 parameters Δρmin = −0.17 e Å3
0 restraints Absolute structure: Flack (1983), 1172 Friedel pairs
0 constraints Flack parameter: 0.005 (15)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.42929 (3) 0.41004 (3) 0.07467 (3) 0.03400 (12)
Cl1 0.28847 (6) 0.47255 (6) −0.00384 (7) 0.0473 (2)
Cl2 0.5000 0.5000 0.20129 (8) 0.0637 (4)
N3 0.3550 (2) 0.3189 (2) 0.1515 (2) 0.0412 (7)
C1 0.3592 (3) 0.2243 (3) 0.1520 (3) 0.0498 (10)
H1 0.3992 0.1887 0.1133 0.060*
C2 0.2867 (3) 0.3436 (3) 0.2180 (2) 0.0485 (10)
C7 0.2518 (3) 0.2588 (3) 0.2595 (3) 0.0533 (10)
N2 0.2998 (3) 0.1839 (2) 0.2144 (2) 0.0548 (9)
C6 0.1844 (3) 0.2627 (4) 0.3322 (3) 0.0736 (15)
H6 0.1636 0.2068 0.3616 0.088*
C3 0.2513 (3) 0.4325 (3) 0.2461 (3) 0.0663 (13)
H3 0.2726 0.4892 0.2184 0.080*
C4 0.1837 (4) 0.4350 (4) 0.3161 (4) 0.0844 (16)
H4 0.1593 0.4940 0.3359 0.101*
C5 0.1515 (4) 0.3495 (5) 0.3574 (4) 0.0899 (18)
H5 0.1056 0.3532 0.4040 0.108*
C8 0.2900 (4) 0.0806 (3) 0.2368 (3) 0.0755 (15)
H8A 0.2343 0.0721 0.2764 0.091*
H8B 0.3465 0.0601 0.2711 0.091*
O1 0.5000 0.5000 0.0000 0.0292 (9)
C9 0.2789 (3) 0.0170 (3) 0.1543 (3) 0.0563 (10)
C10 0.1944 (4) −0.0195 (4) 0.1286 (4) 0.0846 (16)
H10 0.1380 −0.0038 0.1600 0.102*
N1 0.3632 (4) −0.0017 (4) 0.1100 (4) 0.1075 (18)
C12 0.2815 (9) −0.1018 (5) 0.0115 (5) 0.128 (3)
H12 0.2863 −0.1449 −0.0374 0.154*
C11 0.1926 (7) −0.0858 (5) 0.0487 (5) 0.116 (2)
H11 0.1364 −0.1138 0.0261 0.139*
C13 0.3600 (8) −0.0601 (5) 0.0405 (6) 0.140 (4)
H13 0.4172 −0.0730 0.0093 0.168*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0374 (2) 0.0322 (2) 0.03237 (19) −0.00702 (17) 0.0024 (2) 0.00311 (19)
Cl1 0.0319 (5) 0.0549 (5) 0.0552 (5) −0.0045 (4) −0.0026 (4) 0.0094 (5)
Cl2 0.0911 (11) 0.0707 (10) 0.0294 (6) −0.0472 (9) 0.000 0.000
N3 0.0419 (18) 0.0393 (18) 0.0425 (16) −0.0130 (14) 0.0009 (14) 0.0065 (14)
C1 0.061 (3) 0.045 (2) 0.043 (2) −0.0162 (19) −0.006 (2) 0.0044 (19)
C2 0.045 (2) 0.058 (3) 0.042 (2) −0.0166 (19) −0.0002 (18) 0.007 (2)
C7 0.054 (2) 0.060 (3) 0.045 (2) −0.021 (2) 0.001 (2) 0.010 (2)
N2 0.068 (2) 0.048 (2) 0.048 (2) −0.0231 (17) −0.0028 (18) 0.0152 (17)
C6 0.064 (3) 0.096 (4) 0.061 (3) −0.035 (3) 0.005 (2) 0.030 (3)
C3 0.073 (3) 0.060 (3) 0.066 (3) −0.015 (2) 0.021 (3) 0.003 (2)
C4 0.083 (4) 0.080 (4) 0.091 (4) −0.003 (3) 0.037 (3) 0.002 (3)
C5 0.084 (4) 0.102 (5) 0.084 (4) −0.016 (3) 0.040 (3) 0.002 (3)
C8 0.108 (4) 0.054 (3) 0.065 (3) −0.030 (3) −0.008 (3) 0.021 (2)
O1 0.0293 (14) 0.0293 (14) 0.029 (2) 0.000 0.000 0.000
C9 0.064 (3) 0.042 (2) 0.064 (3) −0.002 (2) 0.010 (2) 0.020 (2)
C10 0.093 (4) 0.081 (4) 0.081 (4) −0.020 (3) 0.010 (3) 0.001 (3)
N1 0.107 (4) 0.085 (3) 0.130 (5) 0.035 (3) 0.033 (3) 0.025 (3)
C12 0.229 (11) 0.066 (4) 0.090 (5) −0.007 (6) 0.033 (7) 0.000 (4)
C11 0.158 (7) 0.092 (5) 0.097 (5) −0.030 (5) −0.005 (5) 0.008 (4)
C13 0.202 (10) 0.064 (5) 0.154 (8) 0.052 (5) 0.079 (7) 0.012 (5)

Geometric parameters (Å, °)

Cu1—O1 1.9199 (4) C4—C5 1.400 (7)
Cu1—N3 1.974 (3) C4—H4 0.9300
Cu1—Cl1i 2.3961 (10) C5—H5 0.9300
Cu1—Cl1 2.4192 (10) C8—C9 1.494 (7)
Cu1—Cl2 2.4263 (10) C8—H8A 0.9700
Cl1—Cu1ii 2.3961 (9) C8—H8B 0.9700
Cl2—Cu1iii 2.4263 (10) O1—Cu1iii 1.9199 (4)
N3—C1 1.313 (4) O1—Cu1i 1.9199 (4)
N3—C2 1.394 (5) O1—Cu1ii 1.9199 (4)
C1—N2 1.345 (5) C9—C10 1.328 (6)
C1—H1 0.9300 C9—N1 1.358 (6)
C2—C3 1.386 (6) C10—C11 1.480 (8)
C2—C7 1.407 (5) C10—H10 0.9300
C7—N2 1.395 (6) N1—C13 1.293 (9)
C7—C6 1.409 (6) C12—C13 1.301 (12)
N2—C8 1.474 (5) C12—C11 1.362 (10)
C6—C5 1.337 (8) C12—H12 0.9300
C6—H6 0.9300 C11—H11 0.9300
C3—C4 1.382 (6) C13—H13 0.9300
C3—H3 0.9300
O1—Cu1—N3 179.14 (9) C3—C4—H4 119.7
O1—Cu1—Cl1i 85.68 (3) C5—C4—H4 119.7
N3—Cu1—Cl1i 95.10 (9) C6—C5—C4 122.3 (5)
O1—Cu1—Cl1 85.03 (3) C6—C5—H5 118.8
N3—Cu1—Cl1 94.25 (9) C4—C5—H5 118.8
Cl1i—Cu1—Cl1 120.483 (17) N2—C8—C9 113.9 (4)
O1—Cu1—Cl2 83.56 (2) N2—C8—H8A 108.8
N3—Cu1—Cl2 96.40 (9) C9—C8—H8A 108.8
Cl1i—Cu1—Cl2 117.17 (3) N2—C8—H8B 108.8
Cl1—Cu1—Cl2 119.88 (3) C9—C8—H8B 108.8
Cu1ii—Cl1—Cu1 80.69 (3) H8A—C8—H8B 107.7
Cu1—Cl2—Cu1iii 81.58 (4) Cu1iii—O1—Cu1i 108.564 (12)
C1—N3—C2 105.8 (3) Cu1iii—O1—Cu1 111.30 (2)
C1—N3—Cu1 128.2 (3) Cu1i—O1—Cu1 108.564 (12)
C2—N3—Cu1 126.0 (2) Cu1iii—O1—Cu1ii 108.564 (12)
N3—C1—N2 113.1 (4) Cu1i—O1—Cu1ii 111.30 (2)
N3—C1—H1 123.5 Cu1—O1—Cu1ii 108.564 (12)
N2—C1—H1 123.5 C10—C9—N1 123.5 (5)
C3—C2—N3 131.4 (3) C10—C9—C8 122.7 (5)
C3—C2—C7 119.6 (4) N1—C9—C8 113.8 (5)
N3—C2—C7 108.9 (4) C9—C10—C11 118.1 (6)
N2—C7—C2 104.9 (4) C9—C10—H10 121.0
N2—C7—C6 134.1 (4) C11—C10—H10 121.0
C2—C7—C6 121.0 (5) C13—N1—C9 117.3 (7)
C1—N2—C7 107.4 (3) C13—C12—C11 123.7 (8)
C1—N2—C8 127.5 (4) C13—C12—H12 118.1
C7—N2—C8 125.1 (4) C11—C12—H12 118.1
C5—C6—C7 117.8 (4) C12—C11—C10 113.3 (7)
C5—C6—H6 121.1 C12—C11—H11 123.3
C7—C6—H6 121.1 C10—C11—H11 123.3
C4—C3—C2 118.6 (4) N1—C13—C12 123.9 (8)
C4—C3—H3 120.7 N1—C13—H13 118.0
C2—C3—H3 120.7 C12—C13—H13 118.0
C3—C4—C5 120.6 (5)
O1—Cu1—Cl1—Cu1ii −1.10 (2) N2—C7—C6—C5 −178.9 (5)
N3—Cu1—Cl1—Cu1ii 178.42 (9) C2—C7—C6—C5 3.0 (7)
Cl1i—Cu1—Cl1—Cu1ii −83.12 (4) N3—C2—C3—C4 −178.9 (4)
Cl2—Cu1—Cl1—Cu1ii 78.54 (4) C7—C2—C3—C4 1.4 (7)
O1—Cu1—Cl2—Cu1iii 0.0 C2—C3—C4—C5 −0.2 (8)
N3—Cu1—Cl2—Cu1iii −179.13 (9) C7—C6—C5—C4 −1.8 (9)
Cl1i—Cu1—Cl2—Cu1iii 81.77 (3) C3—C4—C5—C6 0.5 (9)
Cl1—Cu1—Cl2—Cu1iii −80.48 (3) C1—N2—C8—C9 −48.8 (6)
O1—Cu1—N3—C1 150 (6) C7—N2—C8—C9 135.3 (4)
Cl1i—Cu1—N3—C1 −4.5 (3) N3—Cu1—O1—Cu1iii 88 (6)
Cl1—Cu1—N3—C1 116.6 (3) Cl1i—Cu1—O1—Cu1iii −117.99 (3)
Cl2—Cu1—N3—C1 −122.7 (3) Cl1—Cu1—O1—Cu1iii 120.87 (3)
O1—Cu1—N3—C2 −31 (6) Cl2—Cu1—O1—Cu1iii 0.0
Cl1i—Cu1—N3—C2 174.8 (3) N3—Cu1—O1—Cu1i −153 (6)
Cl1—Cu1—N3—C2 −64.1 (3) Cl1i—Cu1—O1—Cu1i 1.44 (3)
Cl2—Cu1—N3—C2 56.7 (3) Cl1—Cu1—O1—Cu1i −119.70 (3)
C2—N3—C1—N2 −0.7 (4) Cl2—Cu1—O1—Cu1i 119.434 (8)
Cu1—N3—C1—N2 178.8 (2) N3—Cu1—O1—Cu1ii −32 (6)
C1—N3—C2—C3 −178.6 (4) Cl1i—Cu1—O1—Cu1ii 122.58 (3)
Cu1—N3—C2—C3 2.0 (6) Cl1—Cu1—O1—Cu1ii 1.43 (3)
C1—N3—C2—C7 1.2 (4) Cl2—Cu1—O1—Cu1ii −119.434 (8)
Cu1—N3—C2—C7 −178.3 (2) N2—C8—C9—C10 −102.8 (6)
C3—C2—C7—N2 178.6 (4) N2—C8—C9—N1 78.9 (5)
N3—C2—C7—N2 −1.2 (4) N1—C9—C10—C11 1.4 (7)
C3—C2—C7—C6 −2.8 (6) C8—C9—C10—C11 −176.8 (4)
N3—C2—C7—C6 177.4 (4) C10—C9—N1—C13 −1.6 (7)
N3—C1—N2—C7 −0.1 (4) C8—C9—N1—C13 176.8 (5)
N3—C1—N2—C8 −176.6 (4) C13—C12—C11—C10 −2.7 (10)
C2—C7—N2—C1 0.8 (4) C9—C10—C11—C12 0.6 (8)
C6—C7—N2—C1 −177.6 (5) C9—N1—C13—C12 −0.5 (10)
C2—C7—N2—C8 177.4 (4) C11—C12—C13—N1 2.8 (13)
C6—C7—N2—C8 −1.0 (8)

Symmetry codes: (i) −y+1, x, −z; (ii) y, −x+1, −z; (iii) −x+1, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6384).

References

  1. Chivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339–2341. [DOI] [PubMed]
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.
  4. Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Willett, R. D. (1991). Coord. Chem. Rev. 109, 181–205.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035252/hb6384sup1.cif

e-67-m1372-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035252/hb6384Isup2.hkl

e-67-m1372-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES