Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2661. doi: 10.1107/S1600536811037159

(E)-2-[4-(2-Chloro­phen­yl)but-3-en-2-yl­idene]malononitrile

Tai-Ran Kang a,*
PMCID: PMC3201519  PMID: 22065812

Abstract

There are two independent but virtually identical mol­ecules in the asymmetric unit of the title compound, C13H19ClN2. Each mol­ecular skeleton displays an approximately planar structure except for the methyl group [the r.m.s. deviations for all 16 non-H atoms are 0.039 (mol­ecule 1) and 0.056 Å (mol­ecule 2)]. An E configuration is found about each of the C=C bonds. The crystal packing is stabilized by C—H⋯N inter­actions that connect the independent mol­ecules into supra­molecular chains along the c-axis direction.

Related literature

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).graphic file with name e-67-o2661-scheme1.jpg

Experimental

Crystal data

  • C13H9ClN2

  • M r = 228.67

  • Triclinic, Inline graphic

  • a = 7.7177 (2) Å

  • b = 11.0539 (5) Å

  • c = 14.7236 (5) Å

  • α = 91.260 (3)°

  • β = 103.992 (3)°

  • γ = 106.357 (3)°

  • V = 1163.99 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 291 K

  • 0.35 × 0.32 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.455, T max = 0.502

  • 9739 measured reflections

  • 4135 independent reflections

  • 3770 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.140

  • S = 1.04

  • 4135 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037159/tk2789sup1.cif

e-67-o2661-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037159/tk2789Isup2.hkl

e-67-o2661-Isup2.hkl (198.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037159/tk2789Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯N3i 0.96 2.62 3.564 (3) 166 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Testing Centre of Sichuan University for the diffraction measurements and are grateful for financial support from China West Normal University (No. 10ZB016).

supplementary crystallographic information

Comment

The chemistry of ylidene malononitrile has been studied extensively for ring closure reactions, with compounds containing newly formed five- or six-membered rings, such as indanes (Zhang et al., 2003), naphthalenes (Liu et al., 2002) and benzenes (Sepiol & Milart, 1985) being obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of (I).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The molecular skeleton displays an approximately planar arrangement in each case. The chlorobenzene ring and 2-propylidenemalononitrile groups are located on opposite sides of the double bond to which they are attached, showing an E configuration. The crystal packing is stabilized by C—H···N interactions (Table 1).

Experimental

2-(Propan-2-ylidene)malononitrile (0.212 g, 2 mmol) and 2-chlorobenzaldehyde (0.28 g, 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol). The solution was then stirred for 24 h at 343 K. The reaction mixture was cooled to room temperature and the solution was filtered to obtain a white solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) were obtained by slow evaporation of its ethyl acetate solution.

Refinement

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing atom labelling scheme and 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C13H9ClN2 Z = 4
Mr = 228.67 F(000) = 472
Triclinic, P1 Dx = 1.305 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.7177 (2) Å Cell parameters from 6315 reflections
b = 11.0539 (5) Å θ = 3.1–72.1°
c = 14.7236 (5) Å µ = 2.67 mm1
α = 91.260 (3)° T = 291 K
β = 103.992 (3)° Block, yellow
γ = 106.357 (3)° 0.35 × 0.32 × 0.30 mm
V = 1163.99 (7) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer 4135 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3770 reflections with I > 2σ(I)
mirror Rint = 0.027
Detector resolution: 15.9149 pixels mm-1 θmax = 67.1°, θmin = 3.1°
ω scans h = −9→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −13→13
Tmin = 0.455, Tmax = 0.502 l = −17→17
9739 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.290P] where P = (Fo2 + 2Fc2)/3
4135 reflections (Δ/σ)max = 0.001
291 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C24 0.5347 (2) 0.25777 (17) 0.36952 (12) 0.0541 (4)
C9 0.6600 (2) 0.30400 (18) 0.94779 (12) 0.0536 (4)
C8 0.6947 (3) 0.43885 (18) 0.96046 (13) 0.0562 (4)
H8 0.6495 0.4786 0.9088 0.067*
C1 0.9378 (3) 0.71648 (18) 1.14140 (13) 0.0569 (4)
C23 0.5469 (3) 0.2649 (2) 0.53865 (14) 0.0670 (5)
H23A 0.4703 0.1791 0.5194 0.100*
H23C 0.4796 0.3106 0.5656 0.100*
H23B 0.6592 0.2654 0.5846 0.100*
C22 0.5964 (3) 0.32662 (18) 0.45502 (13) 0.0551 (4)
N1 0.4827 (4) −0.0031 (2) 0.83682 (16) 0.0942 (7)
C11 0.5561 (3) 0.23861 (18) 0.86407 (13) 0.0574 (4)
C19 0.8945 (3) 0.66283 (18) 0.55896 (14) 0.0588 (5)
C6 0.8253 (2) 0.64747 (17) 1.05665 (12) 0.0524 (4)
C26 0.4247 (3) 0.1281 (2) 0.35739 (15) 0.0697 (5)
C12 0.5155 (3) 0.1042 (2) 0.84862 (15) 0.0679 (5)
C25 0.5774 (3) 0.30988 (19) 0.28661 (13) 0.0600 (5)
C14 0.9546 (3) 0.7332 (2) 0.64619 (15) 0.0651 (5)
C5 0.7504 (3) 0.71784 (19) 0.98811 (14) 0.0613 (5)
H5 0.6738 0.6759 0.9307 0.074*
C4 0.7863 (3) 0.8465 (2) 1.00278 (17) 0.0716 (6)
H4 0.7347 0.8903 0.9557 0.086*
N2 0.4120 (3) 0.3468 (2) 0.72447 (14) 0.0907 (6)
C10 0.7382 (3) 0.2352 (2) 1.02658 (14) 0.0645 (5)
H10A 0.6969 0.1460 1.0073 0.097*
H10C 0.6955 0.2506 1.0806 0.097*
H10B 0.8723 0.2650 1.0423 0.097*
C20 0.7793 (3) 0.53241 (19) 0.54577 (13) 0.0594 (5)
H20 0.7489 0.4972 0.5987 0.071*
C21 0.7120 (3) 0.45749 (18) 0.46499 (13) 0.0577 (4)
H21 0.7412 0.4915 0.4114 0.069*
C7 0.7870 (2) 0.51104 (18) 1.04108 (13) 0.0544 (4)
H7 0.8312 0.4701 1.0922 0.065*
C18 0.9567 (3) 0.7248 (2) 0.48501 (16) 0.0703 (5)
H18 0.9197 0.6815 0.4254 0.084*
C17 1.0704 (3) 0.8474 (2) 0.4987 (2) 0.0855 (7)
H17 1.1080 0.8863 0.4484 0.103*
C2 0.9749 (3) 0.8458 (2) 1.15697 (17) 0.0730 (6)
H2 1.0507 0.8888 1.2142 0.088*
C13 0.4755 (3) 0.2988 (2) 0.78642 (14) 0.0661 (5)
C15 1.0718 (3) 0.8564 (2) 0.6601 (2) 0.0844 (7)
H15 1.1119 0.9008 0.7194 0.101*
C3 0.8988 (3) 0.9107 (2) 1.08720 (19) 0.0776 (6)
H3 0.9233 0.9980 1.0971 0.093*
C16 1.1285 (4) 0.9126 (3) 0.5857 (3) 0.0941 (8)
H16 1.2068 0.9954 0.5947 0.113*
N3 0.6097 (3) 0.3519 (2) 0.22018 (13) 0.0802 (5)
N4 0.3349 (4) 0.0253 (2) 0.34942 (17) 0.1014 (8)
Cl1 1.03787 (8) 0.63948 (6) 1.23196 (4) 0.0778 (2)
Cl2 0.88209 (9) 0.66910 (6) 0.74273 (4) 0.0836 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C24 0.0527 (9) 0.0603 (10) 0.0449 (9) 0.0145 (8) 0.0070 (7) 0.0042 (8)
C9 0.0564 (10) 0.0620 (10) 0.0417 (9) 0.0157 (8) 0.0137 (8) 0.0040 (7)
C8 0.0603 (10) 0.0620 (11) 0.0433 (9) 0.0149 (8) 0.0113 (8) 0.0084 (8)
C1 0.0525 (9) 0.0617 (11) 0.0491 (10) 0.0086 (8) 0.0089 (8) 0.0051 (8)
C23 0.0747 (12) 0.0774 (13) 0.0473 (10) 0.0197 (10) 0.0156 (9) 0.0124 (9)
C22 0.0581 (10) 0.0639 (11) 0.0451 (9) 0.0240 (8) 0.0093 (8) 0.0088 (8)
N1 0.1175 (17) 0.0700 (13) 0.0813 (14) 0.0206 (12) 0.0100 (12) −0.0096 (11)
C11 0.0626 (10) 0.0653 (11) 0.0435 (9) 0.0187 (9) 0.0129 (8) 0.0020 (8)
C19 0.0597 (10) 0.0621 (11) 0.0544 (11) 0.0267 (9) 0.0044 (8) 0.0055 (8)
C6 0.0483 (9) 0.0575 (10) 0.0474 (9) 0.0100 (7) 0.0115 (7) 0.0075 (7)
C26 0.0694 (12) 0.0719 (14) 0.0546 (11) 0.0062 (10) 0.0094 (10) 0.0008 (9)
C12 0.0750 (13) 0.0696 (13) 0.0526 (11) 0.0178 (10) 0.0094 (10) −0.0039 (9)
C25 0.0649 (11) 0.0634 (11) 0.0440 (10) 0.0142 (9) 0.0062 (8) −0.0008 (8)
C14 0.0636 (11) 0.0714 (12) 0.0598 (11) 0.0322 (10) 0.0011 (9) 0.0005 (9)
C5 0.0567 (10) 0.0682 (12) 0.0538 (11) 0.0139 (9) 0.0093 (8) 0.0133 (9)
C4 0.0713 (13) 0.0674 (13) 0.0790 (15) 0.0220 (10) 0.0216 (11) 0.0246 (11)
N2 0.1135 (16) 0.1141 (17) 0.0487 (11) 0.0514 (14) 0.0078 (10) 0.0067 (10)
C10 0.0774 (13) 0.0643 (12) 0.0482 (10) 0.0223 (10) 0.0082 (9) 0.0066 (9)
C20 0.0618 (11) 0.0675 (11) 0.0475 (10) 0.0225 (9) 0.0074 (8) 0.0068 (8)
C21 0.0598 (10) 0.0646 (11) 0.0473 (10) 0.0191 (9) 0.0102 (8) 0.0077 (8)
C7 0.0527 (9) 0.0619 (11) 0.0448 (9) 0.0133 (8) 0.0094 (7) 0.0065 (8)
C18 0.0731 (13) 0.0788 (14) 0.0644 (13) 0.0338 (11) 0.0136 (10) 0.0138 (10)
C17 0.0732 (14) 0.0788 (16) 0.110 (2) 0.0272 (12) 0.0273 (14) 0.0291 (15)
C2 0.0726 (13) 0.0618 (12) 0.0689 (13) 0.0011 (10) 0.0125 (11) −0.0047 (10)
C13 0.0773 (13) 0.0785 (13) 0.0411 (10) 0.0257 (11) 0.0104 (9) −0.0009 (9)
C15 0.0735 (14) 0.0753 (15) 0.0921 (18) 0.0239 (12) −0.0022 (13) −0.0113 (13)
C3 0.0828 (15) 0.0555 (12) 0.0920 (17) 0.0122 (10) 0.0276 (13) 0.0094 (11)
C16 0.0732 (15) 0.0717 (15) 0.127 (3) 0.0179 (12) 0.0117 (16) 0.0060 (16)
N3 0.0992 (14) 0.0858 (13) 0.0485 (10) 0.0164 (11) 0.0189 (9) 0.0050 (9)
N4 0.1103 (17) 0.0789 (14) 0.0845 (15) −0.0136 (13) 0.0191 (13) −0.0043 (11)
Cl1 0.0806 (4) 0.0843 (4) 0.0513 (3) 0.0177 (3) −0.0067 (2) 0.0067 (2)
Cl2 0.0973 (4) 0.1005 (5) 0.0477 (3) 0.0347 (3) 0.0035 (3) −0.0035 (3)

Geometric parameters (Å, °)

C24—C22 1.362 (3) C25—N3 1.144 (3)
C24—C26 1.427 (3) C14—C15 1.386 (3)
C24—C25 1.432 (3) C14—Cl2 1.744 (2)
C9—C11 1.357 (3) C5—C4 1.372 (3)
C9—C8 1.438 (3) C5—H5 0.9300
C9—C10 1.499 (3) C4—C3 1.377 (3)
C8—C7 1.335 (3) C4—H4 0.9300
C8—H8 0.9300 N2—C13 1.143 (3)
C1—C2 1.379 (3) C10—H10A 0.9600
C1—C6 1.398 (3) C10—H10C 0.9600
C1—Cl1 1.738 (2) C10—H10B 0.9600
C23—C22 1.498 (3) C20—C21 1.336 (3)
C23—H23A 0.9600 C20—H20 0.9300
C23—H23C 0.9600 C21—H21 0.9300
C23—H23B 0.9600 C7—H7 0.9300
C22—C21 1.453 (3) C18—C17 1.370 (3)
N1—C12 1.141 (3) C18—H18 0.9300
C11—C12 1.430 (3) C17—C16 1.365 (4)
C11—C13 1.435 (3) C17—H17 0.9300
C19—C14 1.391 (3) C2—C3 1.376 (3)
C19—C18 1.409 (3) C2—H2 0.9300
C19—C20 1.445 (3) C15—C16 1.372 (4)
C6—C5 1.401 (3) C15—H15 0.9300
C6—C7 1.454 (3) C3—H3 0.9300
C26—N4 1.139 (3) C16—H16 0.9300
C22—C24—C26 121.80 (17) C6—C5—H5 118.9
C22—C24—C25 122.40 (17) C5—C4—C3 120.0 (2)
C26—C24—C25 115.80 (17) C5—C4—H4 120.0
C11—C9—C8 119.85 (17) C3—C4—H4 120.0
C11—C9—C10 119.80 (18) C9—C10—H10A 109.5
C8—C9—C10 120.35 (16) C9—C10—H10C 109.5
C7—C8—C9 124.63 (17) H10A—C10—H10C 109.5
C7—C8—H8 117.7 C9—C10—H10B 109.5
C9—C8—H8 117.7 H10A—C10—H10B 109.5
C2—C1—C6 122.53 (19) H10C—C10—H10B 109.5
C2—C1—Cl1 117.46 (16) C21—C20—C19 126.43 (19)
C6—C1—Cl1 120.01 (15) C21—C20—H20 116.8
C22—C23—H23A 109.5 C19—C20—H20 116.8
C22—C23—H23C 109.5 C20—C21—C22 124.53 (18)
H23A—C23—H23C 109.5 C20—C21—H21 117.7
C22—C23—H23B 109.5 C22—C21—H21 117.7
H23A—C23—H23B 109.5 C8—C7—C6 126.29 (17)
H23C—C23—H23B 109.5 C8—C7—H7 116.9
C24—C22—C21 120.17 (17) C6—C7—H7 116.9
C24—C22—C23 119.18 (18) C17—C18—C19 121.7 (2)
C21—C22—C23 120.64 (17) C17—C18—H18 119.1
C9—C11—C12 121.86 (18) C19—C18—H18 119.1
C9—C11—C13 122.42 (18) C16—C17—C18 120.3 (3)
C12—C11—C13 115.70 (18) C16—C17—H17 119.9
C14—C19—C18 116.2 (2) C18—C17—H17 119.9
C14—C19—C20 121.75 (19) C3—C2—C1 119.5 (2)
C18—C19—C20 122.03 (19) C3—C2—H2 120.3
C1—C6—C5 115.78 (18) C1—C2—H2 120.3
C1—C6—C7 122.04 (17) N2—C13—C11 179.7 (2)
C5—C6—C7 122.18 (17) C16—C15—C14 119.6 (3)
N4—C26—C24 178.2 (3) C16—C15—H15 120.2
N1—C12—C11 179.5 (3) C14—C15—H15 120.2
N3—C25—C24 179.2 (2) C2—C3—C4 120.0 (2)
C15—C14—C19 121.9 (2) C2—C3—H3 120.0
C15—C14—Cl2 117.28 (19) C4—C3—H3 120.0
C19—C14—Cl2 120.77 (17) C17—C16—C15 120.3 (2)
C4—C5—C6 122.21 (19) C17—C16—H16 119.9
C4—C5—H5 118.9 C15—C16—H16 119.9
C11—C9—C8—C7 176.58 (19) C1—C6—C5—C4 0.6 (3)
C10—C9—C8—C7 −3.4 (3) C7—C6—C5—C4 179.95 (18)
C26—C24—C22—C21 178.43 (18) C6—C5—C4—C3 −0.3 (3)
C25—C24—C22—C21 −0.8 (3) C14—C19—C20—C21 178.88 (19)
C26—C24—C22—C23 −0.3 (3) C18—C19—C20—C21 −2.9 (3)
C25—C24—C22—C23 −179.49 (18) C19—C20—C21—C22 −179.99 (17)
C8—C9—C11—C12 −179.02 (18) C24—C22—C21—C20 −179.91 (19)
C10—C9—C11—C12 1.0 (3) C23—C22—C21—C20 −1.2 (3)
C8—C9—C11—C13 −0.8 (3) C9—C8—C7—C6 179.82 (17)
C10—C9—C11—C13 179.17 (19) C1—C6—C7—C8 −174.14 (19)
C2—C1—C6—C5 −0.6 (3) C5—C6—C7—C8 6.5 (3)
Cl1—C1—C6—C5 179.76 (14) C14—C19—C18—C17 0.2 (3)
C2—C1—C6—C7 −179.94 (18) C20—C19—C18—C17 −178.10 (19)
Cl1—C1—C6—C7 0.4 (3) C19—C18—C17—C16 0.8 (3)
C22—C24—C26—N4 35 (9) C6—C1—C2—C3 0.2 (3)
C25—C24—C26—N4 −146 (9) Cl1—C1—C2—C3 179.92 (18)
C9—C11—C12—N1 56 (43) C9—C11—C13—N2 85 (47)
C13—C11—C12—N1 −122 (43) C12—C11—C13—N2 −96 (47)
C22—C24—C25—N3 −90 (17) C19—C14—C15—C16 1.2 (3)
C26—C24—C25—N3 91 (17) Cl2—C14—C15—C16 −178.09 (19)
C18—C19—C14—C15 −1.2 (3) C1—C2—C3—C4 0.1 (4)
C20—C19—C14—C15 177.10 (19) C5—C4—C3—C2 −0.1 (4)
C18—C19—C14—Cl2 178.12 (14) C18—C17—C16—C15 −0.8 (4)
C20—C19—C14—Cl2 −3.6 (3) C14—C15—C16—C17 −0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10C···N3i 0.96 2.62 3.564 (3) 166.(1)

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2789).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164. [DOI] [PMC free article] [PubMed]
  3. Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019–7028. [DOI] [PubMed]
  4. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  5. Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295–3298. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037159/tk2789sup1.cif

e-67-o2661-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037159/tk2789Isup2.hkl

e-67-o2661-Isup2.hkl (198.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037159/tk2789Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES