Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1327. doi: 10.1107/S1600536811033800

{N,N-Bis[2-(diphenyl­phosphan­yl)eth­yl]­aniline}(η2-dibenzyl­ideneacetone)­palladium(0)

Seyma Gören Keskin a, Julie M Stanley a, Michelle L Mejía a, Bradley J Holliday a,*
PMCID: PMC3201522  PMID: 22064646

Abstract

In the title complex, [Pd(C34H33NP2)(C17H14O)], the Pd0 atom is coordinated in a trigonal planar geometry formed by two P atoms of a bis­[(diphenyl­phosphino)eth­yl]aniline ligand and a C=C (η2) bond involving the C atoms that are in the α,β positions relative to the central ketone of the dibenzyl­ideneacetone ligand.

Related literature

For general background and the potential applications of palladium complexes incorporating multidentate ligands, see: Blower et al. (1997); Michos et al. (1992); Kostas (2001); Lee et al. (2006); Hii et al. (1999). For similar structures, see: Retbøll et al. (2002); Goddard et al. (1995).graphic file with name e-67-m1327-scheme1.jpg

Experimental

Crystal data

  • [Pd(C34H33NP2)(C17H14O)]

  • M r = 858.24

  • Triclinic, Inline graphic

  • a = 10.087 (2) Å

  • b = 11.974 (2) Å

  • c = 17.473 (4) Å

  • α = 86.34 (3)°

  • β = 81.27 (2)°

  • γ = 83.15 (3)°

  • V = 2068.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 153 K

  • 0.27 × 0.14 × 0.12 mm

Data collection

  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) T min = 0.837, T max = 1.000

  • 15976 measured reflections

  • 9324 independent reflections

  • 7745 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.089

  • S = 1.58

  • 9324 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033800/lh5314sup1.cif

e-67-m1327-sup1.cif (47.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033800/lh5314Isup2.hkl

e-67-m1327-Isup2.hkl (446.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Robert A. Welch Foundation (grant No. F-1631), the National Science Foundation (grant Nos. CHE-0741973 and CHE-0847763), the Advanced Research Program of the Texas Higher Education Coordinating Board (grant No. 01916-090-2010), the American Heart Association (grant No. 0765078Y) and UT–Austin for financial support of this research. The single-crystal X-ray data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. 0741973). Additionally, JMS would like to acknowledge financial support of this research by the ICDD and a Grant-In-Aid of Research from Sigma-Xi, the Scientific Research Society.

supplementary crystallographic information

Comment

Palladium complexes which incorporate multidentate ligands have been used in a variety of applications, such as catalysis, biotechnology and materials science (Blower et al., 1997; Michos et al., 1992; Kostas, 2001; Lee et al., 2006). These multidentate ligands may contain donor atoms of the same type or be comprised of mixed donor atoms such as oxygen, carbon, phosphorous, sulfur and nitrogen (i.e., NNN, PNP, SPS). Advantages of mixed donor systems include flexible coordination modes and complex stability, both of which have the potential to increase performance in catalytic applications (Hii et al., 1999), including coupling, hydrogenation and dehydrogenation reactions. Many examples of PNP-type (phosphorous/nitrogen/phosphorous) ligands have been studied because the hemilabile property of the nitrogen atom gives different coordination geometries, including tridentate monomeric (PNP), bidentate monomeric (PP) and bidentate dimeric (PP) modes, which can be controlled by substitution of the nitrogen atom, thereby affecting the nitrogen donor strength.

The molecular structure of the title compound is shown in Fig. 1. The geometry around the palladium atom is trigonal planar with the angle between the Pd—P1—P2 and Pd—C41—C42 planes being 1.40 °. The N,N-bis[(diphenylphosphino)-ethyl]aniline ligand is in a monomeric (PP) binding mode in which the nitrogen atom of the ligand is not bound to the metal center (distance between N1 and Pd1 is 3.405 Å). The average Pd1—P bond length is 2.326 Å, which is consistent with similar structures reported in the literature (Retbøll et al., 2002; Goddard et al., 1995). Dibenzylideneacetone (dba) is bound to Pd1 via one of the carbon-carbon double bonds in an η2 fashion, with the C41=C42 bond (1.411 (3)Å) slightly elongated due to complexation when compared to C44=C45 (1.327 (3) Å) and the C41=C42 centroid-Pd1 distance is 2.044 Å. Similar Pd(0) coordination environments have been previously reported with chelating diphosphine and dba ligands which also display the elongated carbon-carbon double bond (1.417 (3) Å) (Retbøll et al., 2002). This coordination mode is not surprising since Pd2dba3 is the metal precursor used in the synthesis of the title complex and includes two palladium atoms with each metal bound η2 to the three dba ligands.

Experimental

To 0.202 g of N,N-bis[(diphenylphosphino)ethyl]aniline under nitrogen in 5 ml anhydrous THF was added 0.179 g Pd2dba3. The reaction mixture was stirred at room temperature for 15 h, followed by filtration and removal of the solvent. Pure product was obtained by recrystallization from methylene chloride and hexanes yielding orange crystals suitable for diffraction. Purity and composition were confirmed by comparing 1H and 31P{1H} NMR spectroscopy and mass spectrometry data to literature values (Hii et al., 1999). Yield = 54%.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95-0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of dibenzylideneacetone {N,N-bis[(diphenylphosphino)ethyl]aniline}palladium(0) showing ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

[Pd(C34H33NP2)(C17H14O)] Z = 2
Mr = 858.24 F(000) = 888
Triclinic, P1 Dx = 1.378 Mg m3
Hall symbol: -P 1 Melting point: 420 K
a = 10.087 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.974 (2) Å Cell parameters from 27945 reflections
c = 17.473 (4) Å θ = 1.0–27.5°
α = 86.34 (3)° µ = 0.57 mm1
β = 81.27 (2)° T = 153 K
γ = 83.15 (3)° Prism, orange
V = 2068.8 (7) Å3 0.27 × 0.14 × 0.12 mm

Data collection

Nonius Kappa CCD diffractometer 9324 independent reflections
Radiation source: fine-focus sealed tube 7745 reflections with I > 2σ(I)
graphite Rint = 0.031
ω–scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) h = −12→13
Tmin = 0.837, Tmax = 1.000 k = −14→15
15976 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.58 w = 1/[σ2(Fo2) + (0.020P)2] where P = (Fo2 + 2Fc2)/3
9324 reflections (Δ/σ)max = 0.002
505 parameters Δρmax = 1.56 e Å3
0 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.699379 (17) 0.165949 (14) 0.714724 (10) 0.02103 (7)
P1 0.76258 (6) 0.26802 (5) 0.60129 (3) 0.02080 (14)
P2 0.88250 (6) 0.14942 (5) 0.78434 (3) 0.02179 (14)
O1 0.60286 (17) −0.08845 (14) 0.71914 (10) 0.0329 (4)
N1 0.80565 (19) 0.41621 (16) 0.74653 (11) 0.0243 (5)
C29 1.0050 (2) 0.0255 (2) 0.76262 (13) 0.0231 (5)
C17 0.6584 (2) 0.26165 (19) 0.52443 (12) 0.0213 (5)
C45 0.6737 (2) −0.1747 (2) 0.86247 (14) 0.0283 (6)
H45 0.6959 −0.2166 0.8170 0.034*
C10 0.7601 (2) 0.42025 (19) 0.61030 (14) 0.0247 (5)
H10A 0.7884 0.4555 0.5585 0.030*
H10B 0.6665 0.4526 0.6285 0.030*
C21 0.5339 (2) 0.3398 (2) 0.42294 (14) 0.0288 (6)
H21 0.5012 0.4036 0.3933 0.035*
C44 0.6082 (2) −0.0729 (2) 0.85348 (14) 0.0267 (6)
H44 0.5801 −0.0282 0.8973 0.032*
C36 0.3912 (2) 0.3359 (2) 0.73626 (15) 0.0312 (6)
H36 0.4375 0.3298 0.7801 0.037*
C22 0.6075 (2) 0.3537 (2) 0.48183 (13) 0.0246 (5)
H22 0.6231 0.4272 0.4930 0.030*
C11 0.9295 (2) 0.22565 (19) 0.54657 (13) 0.0223 (5)
C24 0.7150 (3) 0.1589 (2) 0.92741 (14) 0.0278 (6)
H24 0.6434 0.1666 0.8972 0.033*
C12 1.0002 (2) 0.1268 (2) 0.57025 (14) 0.0278 (6)
H12 0.9654 0.0868 0.6162 0.033*
C19 0.5585 (2) 0.1407 (2) 0.44922 (14) 0.0270 (6)
H19 0.5423 0.0673 0.4380 0.032*
C35 0.4079 (2) 0.2461 (2) 0.68703 (13) 0.0254 (6)
C6 0.6271 (2) 0.5772 (2) 0.75423 (14) 0.0273 (6)
H6 0.6659 0.6085 0.7059 0.033*
C46 0.7162 (2) −0.2308 (2) 0.93276 (14) 0.0295 (6)
C23 0.8463 (2) 0.14303 (19) 0.89111 (13) 0.0251 (5)
C40 0.3364 (2) 0.2593 (2) 0.62354 (14) 0.0315 (6)
H40 0.3455 0.1998 0.5890 0.038*
C20 0.5078 (2) 0.2336 (2) 0.40700 (14) 0.0291 (6)
H20 0.4556 0.2245 0.3674 0.035*
C47 0.6983 (3) −0.1807 (2) 1.00444 (15) 0.0356 (6)
H47 0.6571 −0.1054 1.0088 0.043*
C14 1.1723 (3) 0.1405 (2) 0.46096 (16) 0.0351 (6)
H14 1.2544 0.1109 0.4314 0.042*
C30 1.1453 (2) 0.0263 (2) 0.75161 (14) 0.0297 (6)
H30 1.1826 0.0938 0.7577 0.036*
C32 1.1778 (3) −0.1687 (2) 0.72396 (16) 0.0374 (7)
H32 1.2361 −0.2351 0.7107 0.045*
C31 1.2304 (3) −0.0709 (2) 0.73177 (14) 0.0337 (6)
H31 1.3254 −0.0691 0.7236 0.040*
C38 0.2385 (3) 0.4442 (2) 0.65952 (16) 0.0386 (7)
H38 0.1811 0.5111 0.6505 0.046*
C18 0.6324 (2) 0.1547 (2) 0.50759 (13) 0.0238 (5)
H18 0.6660 0.0907 0.5367 0.029*
C51 0.7793 (3) −0.3413 (2) 0.92972 (17) 0.0410 (7)
H51 0.7931 −0.3775 0.8819 0.049*
C9 0.8522 (2) 0.4495 (2) 0.66621 (13) 0.0266 (6)
H9A 0.9442 0.4115 0.6507 0.032*
H9B 0.8575 0.5317 0.6621 0.032*
C5 0.5092 (3) 0.6314 (2) 0.79378 (16) 0.0368 (7)
H5 0.4683 0.6992 0.7720 0.044*
C48 0.7397 (3) −0.2391 (3) 1.06887 (16) 0.0418 (7)
H48 0.7252 −0.2040 1.1171 0.050*
C2 0.6271 (3) 0.4334 (2) 0.85650 (14) 0.0297 (6)
H2 0.6669 0.3653 0.8785 0.036*
C42 0.5221 (2) 0.0900 (2) 0.76997 (14) 0.0253 (5)
H42 0.5020 0.1320 0.8154 0.030*
C16 0.9820 (3) 0.2829 (2) 0.47930 (16) 0.0403 (7)
H16 0.9353 0.3513 0.4622 0.048*
C43 0.5779 (2) −0.0273 (2) 0.77551 (14) 0.0257 (5)
C39 0.2532 (2) 0.3565 (2) 0.61000 (15) 0.0372 (7)
H39 0.2059 0.3631 0.5666 0.045*
C13 1.1214 (3) 0.0854 (2) 0.52758 (15) 0.0342 (6)
H13 1.1696 0.0179 0.5450 0.041*
C33 1.0403 (3) −0.1711 (2) 0.7353 (2) 0.0509 (8)
H33 1.0038 −0.2396 0.7312 0.061*
C1 0.6888 (2) 0.4776 (2) 0.78474 (13) 0.0251 (5)
C41 0.4974 (2) 0.1423 (2) 0.69805 (13) 0.0249 (5)
H41 0.5428 0.1071 0.6527 0.030*
C25 0.6851 (3) 0.1638 (2) 1.00788 (15) 0.0369 (7)
H25 0.5939 0.1750 1.0321 0.044*
C37 0.3084 (3) 0.4333 (2) 0.72226 (16) 0.0376 (7)
H37 0.2995 0.4935 0.7562 0.045*
C34 0.9547 (3) −0.0739 (2) 0.75257 (17) 0.0391 (7)
H34 0.8599 −0.0757 0.7576 0.047*
C3 0.5102 (3) 0.4874 (2) 0.89517 (16) 0.0384 (7)
H3 0.4697 0.4561 0.9431 0.046*
C8 0.9909 (2) 0.26442 (19) 0.76920 (14) 0.0257 (5)
H8A 1.0655 0.2465 0.8004 0.031*
H8B 1.0313 0.2691 0.7140 0.031*
C28 0.9503 (3) 0.1305 (2) 0.93644 (15) 0.0374 (7)
H28 1.0414 0.1181 0.9123 0.045*
C15 1.1036 (3) 0.2395 (2) 0.43694 (17) 0.0458 (7)
H15 1.1394 0.2789 0.3909 0.055*
C26 0.7889 (3) 0.1523 (2) 1.05210 (15) 0.0429 (7)
H26 0.7691 0.1555 1.1069 0.052*
C4 0.4513 (3) 0.5879 (3) 0.86398 (17) 0.0418 (7)
H4 0.3716 0.6261 0.8910 0.050*
C49 0.8019 (3) −0.3480 (3) 1.06404 (17) 0.0470 (8)
H49 0.8306 −0.3875 1.1086 0.056*
C27 0.9215 (3) 0.1361 (3) 1.01663 (16) 0.0466 (8)
H27 0.9928 0.1288 1.0470 0.056*
C7 0.9154 (2) 0.3793 (2) 0.79127 (14) 0.0278 (6)
H7A 0.8779 0.3754 0.8470 0.033*
H7B 0.9804 0.4362 0.7835 0.033*
C50 0.8220 (3) −0.3990 (3) 0.99378 (18) 0.0480 (8)
H50 0.8652 −0.4738 0.9898 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02037 (11) 0.02645 (12) 0.01626 (11) −0.00308 (7) −0.00279 (7) 0.00024 (8)
P1 0.0207 (3) 0.0243 (3) 0.0169 (3) −0.0005 (3) −0.0029 (3) −0.0006 (3)
P2 0.0220 (3) 0.0262 (3) 0.0169 (3) −0.0021 (3) −0.0027 (3) 0.0001 (3)
O1 0.0411 (11) 0.0346 (10) 0.0253 (9) −0.0077 (8) −0.0074 (8) −0.0081 (8)
N1 0.0286 (11) 0.0254 (11) 0.0192 (10) −0.0001 (9) −0.0063 (9) −0.0012 (9)
C29 0.0251 (13) 0.0285 (13) 0.0142 (11) 0.0001 (10) −0.0012 (10) 0.0011 (10)
C17 0.0196 (12) 0.0300 (13) 0.0130 (11) −0.0008 (10) 0.0011 (9) −0.0024 (10)
C45 0.0286 (14) 0.0335 (14) 0.0238 (13) −0.0092 (11) −0.0025 (11) −0.0020 (12)
C10 0.0297 (13) 0.0235 (12) 0.0207 (12) −0.0010 (10) −0.0043 (11) −0.0012 (11)
C21 0.0321 (14) 0.0298 (14) 0.0247 (13) 0.0024 (11) −0.0105 (11) 0.0009 (11)
C44 0.0264 (13) 0.0326 (14) 0.0218 (13) −0.0089 (11) −0.0008 (11) −0.0017 (11)
C36 0.0304 (14) 0.0399 (15) 0.0263 (14) −0.0104 (12) −0.0100 (11) 0.0015 (12)
C22 0.0255 (13) 0.0255 (13) 0.0224 (13) −0.0009 (10) −0.0038 (10) −0.0010 (11)
C11 0.0207 (12) 0.0262 (13) 0.0199 (12) −0.0024 (10) −0.0024 (10) −0.0020 (11)
C24 0.0321 (14) 0.0278 (14) 0.0238 (13) −0.0062 (11) −0.0028 (11) −0.0026 (11)
C12 0.0330 (14) 0.0323 (14) 0.0167 (12) 0.0013 (11) −0.0039 (11) 0.0004 (11)
C19 0.0296 (14) 0.0285 (14) 0.0233 (13) −0.0056 (11) −0.0001 (11) −0.0077 (11)
C35 0.0184 (12) 0.0373 (15) 0.0212 (13) −0.0088 (11) −0.0010 (10) −0.0003 (11)
C6 0.0307 (14) 0.0266 (13) 0.0268 (13) −0.0025 (11) −0.0099 (11) −0.0061 (11)
C46 0.0264 (14) 0.0333 (15) 0.0304 (14) −0.0056 (11) −0.0074 (11) −0.0009 (12)
C23 0.0320 (14) 0.0230 (13) 0.0200 (12) −0.0022 (10) −0.0032 (11) −0.0011 (10)
C40 0.0218 (13) 0.0491 (17) 0.0231 (13) −0.0031 (12) −0.0015 (11) −0.0046 (12)
C20 0.0271 (14) 0.0418 (16) 0.0191 (13) −0.0054 (12) −0.0041 (11) −0.0029 (12)
C47 0.0289 (15) 0.0452 (16) 0.0321 (15) 0.0001 (12) −0.0044 (12) −0.0042 (13)
C14 0.0276 (14) 0.0355 (15) 0.0393 (16) 0.0011 (12) 0.0033 (12) −0.0079 (14)
C30 0.0267 (14) 0.0354 (14) 0.0282 (14) −0.0022 (11) −0.0069 (11) −0.0056 (12)
C32 0.0350 (16) 0.0336 (15) 0.0400 (16) 0.0063 (12) −0.0005 (13) −0.0055 (13)
C31 0.0224 (13) 0.0487 (17) 0.0292 (14) 0.0012 (12) −0.0045 (11) −0.0033 (13)
C38 0.0275 (15) 0.0439 (17) 0.0426 (17) −0.0050 (12) −0.0043 (13) 0.0129 (14)
C18 0.0252 (13) 0.0255 (13) 0.0185 (12) 0.0020 (10) 0.0004 (10) −0.0014 (11)
C51 0.0532 (18) 0.0347 (16) 0.0390 (17) −0.0075 (13) −0.0161 (14) −0.0035 (14)
C9 0.0298 (14) 0.0262 (13) 0.0242 (13) −0.0014 (11) −0.0063 (11) −0.0009 (11)
C5 0.0410 (17) 0.0329 (15) 0.0388 (17) 0.0034 (12) −0.0155 (14) −0.0110 (13)
C48 0.0334 (16) 0.064 (2) 0.0289 (15) −0.0039 (14) −0.0077 (13) −0.0063 (15)
C2 0.0357 (15) 0.0301 (14) 0.0251 (14) −0.0070 (12) −0.0060 (12) −0.0045 (12)
C42 0.0239 (13) 0.0326 (14) 0.0216 (13) −0.0094 (11) −0.0050 (10) −0.0032 (11)
C16 0.0399 (16) 0.0346 (15) 0.0378 (16) 0.0046 (13) 0.0091 (13) 0.0122 (13)
C43 0.0196 (12) 0.0339 (14) 0.0249 (13) −0.0117 (11) −0.0011 (10) 0.0004 (12)
C39 0.0235 (14) 0.0583 (19) 0.0297 (15) −0.0045 (13) −0.0076 (12) 0.0069 (14)
C13 0.0311 (15) 0.0373 (15) 0.0305 (15) 0.0088 (12) −0.0027 (12) −0.0010 (13)
C33 0.0401 (18) 0.0304 (16) 0.080 (2) −0.0066 (13) 0.0052 (16) −0.0119 (16)
C1 0.0273 (13) 0.0290 (13) 0.0206 (13) −0.0033 (11) −0.0064 (11) −0.0066 (11)
C41 0.0189 (12) 0.0381 (15) 0.0179 (12) −0.0067 (11) −0.0003 (10) −0.0032 (11)
C25 0.0453 (17) 0.0372 (16) 0.0255 (14) −0.0087 (13) 0.0082 (13) −0.0058 (13)
C37 0.0371 (16) 0.0351 (15) 0.0427 (17) −0.0079 (13) −0.0086 (13) −0.0027 (13)
C34 0.0234 (14) 0.0345 (15) 0.0563 (19) −0.0042 (12) 0.0062 (13) −0.0050 (14)
C3 0.0414 (17) 0.0514 (18) 0.0252 (14) −0.0131 (14) −0.0038 (13) −0.0112 (14)
C8 0.0250 (13) 0.0283 (13) 0.0246 (13) −0.0048 (10) −0.0067 (11) 0.0018 (11)
C28 0.0375 (16) 0.0485 (17) 0.0255 (14) 0.0040 (13) −0.0094 (12) −0.0016 (13)
C15 0.0420 (18) 0.0453 (18) 0.0413 (17) −0.0059 (14) 0.0175 (14) 0.0097 (15)
C26 0.063 (2) 0.0445 (17) 0.0183 (14) 0.0002 (15) 0.0008 (14) −0.0026 (13)
C4 0.0363 (16) 0.0512 (19) 0.0389 (17) 0.0008 (14) −0.0047 (14) −0.0221 (16)
C49 0.0449 (18) 0.062 (2) 0.0375 (17) −0.0124 (16) −0.0170 (14) 0.0135 (16)
C27 0.058 (2) 0.0569 (19) 0.0270 (15) 0.0048 (16) −0.0193 (15) −0.0033 (14)
C7 0.0324 (14) 0.0273 (13) 0.0262 (13) −0.0066 (11) −0.0091 (11) −0.0023 (11)
C50 0.057 (2) 0.0389 (17) 0.052 (2) −0.0024 (14) −0.0248 (16) 0.0026 (15)

Geometric parameters (Å, °)

Pd1—C41 2.155 (2) C14—C13 1.362 (4)
Pd1—C42 2.170 (2) C14—C15 1.375 (4)
Pd1—P1 2.3068 (10) C14—H14 0.9500
Pd1—P2 2.3441 (9) C30—C31 1.390 (3)
P1—C10 1.836 (2) C30—H30 0.9500
P1—C17 1.837 (2) C32—C31 1.366 (4)
P1—C11 1.837 (2) C32—C33 1.374 (4)
P2—C29 1.835 (2) C32—H32 0.9500
P2—C8 1.840 (2) C31—H31 0.9500
P2—C23 1.844 (2) C38—C37 1.382 (4)
O1—C43 1.242 (3) C38—C39 1.384 (4)
N1—C1 1.411 (3) C38—H38 0.9500
N1—C9 1.457 (3) C18—H18 0.9500
N1—C7 1.460 (3) C51—C50 1.376 (4)
C29—C34 1.379 (3) C51—H51 0.9500
C29—C30 1.399 (3) C9—H9A 0.9900
C17—C22 1.381 (3) C9—H9B 0.9900
C17—C18 1.395 (3) C5—C4 1.375 (4)
C45—C44 1.327 (3) C5—H5 0.9500
C45—C46 1.459 (3) C48—C49 1.379 (4)
C45—H45 0.9500 C48—H48 0.9500
C10—C9 1.529 (3) C2—C3 1.377 (4)
C10—H10A 0.9900 C2—C1 1.413 (4)
C10—H10B 0.9900 C2—H2 0.9500
C21—C20 1.382 (3) C42—C41 1.411 (3)
C21—C22 1.386 (3) C42—C43 1.453 (3)
C21—H21 0.9500 C42—H42 0.9500
C44—C43 1.496 (3) C16—C15 1.394 (4)
C44—H44 0.9500 C16—H16 0.9500
C36—C37 1.382 (4) C39—H39 0.9500
C36—C35 1.398 (3) C13—H13 0.9500
C36—H36 0.9500 C33—C34 1.384 (4)
C22—H22 0.9500 C33—H33 0.9500
C11—C12 1.380 (3) C41—H41 0.9500
C11—C16 1.388 (4) C25—C26 1.382 (4)
C24—C23 1.376 (3) C25—H25 0.9500
C24—C25 1.396 (3) C37—H37 0.9500
C24—H24 0.9500 C34—H34 0.9500
C12—C13 1.387 (3) C3—C4 1.394 (4)
C12—H12 0.9500 C3—H3 0.9500
C19—C18 1.381 (3) C8—C7 1.533 (3)
C19—C20 1.384 (3) C8—H8A 0.9900
C19—H19 0.9500 C8—H8B 0.9900
C35—C40 1.403 (3) C28—C27 1.391 (4)
C35—C41 1.467 (3) C28—H28 0.9500
C6—C1 1.392 (3) C15—H15 0.9500
C6—C5 1.392 (3) C26—C27 1.383 (4)
C6—H6 0.9500 C26—H26 0.9500
C46—C51 1.399 (4) C4—H4 0.9500
C46—C47 1.401 (3) C49—C50 1.383 (4)
C23—C28 1.396 (3) C49—H49 0.9500
C40—C39 1.380 (4) C27—H27 0.9500
C40—H40 0.9500 C7—H7A 0.9900
C20—H20 0.9500 C7—H7B 0.9900
C47—C48 1.379 (4) C50—H50 0.9500
C47—H47 0.9500
C41—Pd1—C42 38.09 (9) C19—C18—C17 120.9 (2)
C41—Pd1—P1 99.11 (7) C19—C18—H18 119.5
C42—Pd1—P1 137.21 (7) C17—C18—H18 119.5
C41—Pd1—P2 154.31 (7) C50—C51—C46 122.1 (3)
C42—Pd1—P2 116.24 (7) C50—C51—H51 119.0
P1—Pd1—P2 106.54 (3) C46—C51—H51 119.0
C10—P1—C17 102.49 (11) N1—C9—C10 112.9 (2)
C10—P1—C11 104.10 (11) N1—C9—H9A 109.0
C17—P1—C11 99.22 (10) C10—C9—H9A 109.0
C10—P1—Pd1 115.73 (8) N1—C9—H9B 109.0
C17—P1—Pd1 115.60 (8) C10—C9—H9B 109.0
C11—P1—Pd1 117.32 (8) H9A—C9—H9B 107.8
C29—P2—C8 102.03 (11) C4—C5—C6 120.8 (3)
C29—P2—C23 103.60 (11) C4—C5—H5 119.6
C8—P2—C23 99.81 (11) C6—C5—H5 119.6
C29—P2—Pd1 114.30 (8) C49—C48—C47 120.8 (3)
C8—P2—Pd1 116.74 (8) C49—C48—H48 119.6
C23—P2—Pd1 117.99 (8) C47—C48—H48 119.6
C1—N1—C9 117.92 (19) C3—C2—C1 121.2 (3)
C1—N1—C7 117.68 (18) C3—C2—H2 119.4
C9—N1—C7 113.44 (19) C1—C2—H2 119.4
C34—C29—C30 117.9 (2) C41—C42—C43 120.9 (2)
C34—C29—P2 117.35 (18) C41—C42—Pd1 70.40 (14)
C30—C29—P2 124.61 (18) C43—C42—Pd1 100.38 (15)
C22—C17—C18 118.5 (2) C41—C42—H42 119.5
C22—C17—P1 124.97 (17) C43—C42—H42 119.5
C18—C17—P1 116.49 (17) Pd1—C42—H42 99.1
C44—C45—C46 128.7 (2) C11—C16—C15 119.8 (3)
C44—C45—H45 115.7 C11—C16—H16 120.1
C46—C45—H45 115.7 C15—C16—H16 120.1
C9—C10—P1 113.19 (17) O1—C43—C42 123.2 (2)
C9—C10—H10A 108.9 O1—C43—C44 120.1 (2)
P1—C10—H10A 108.9 C42—C43—C44 116.7 (2)
C9—C10—H10B 108.9 C40—C39—C38 120.2 (2)
P1—C10—H10B 108.9 C40—C39—H39 119.9
H10A—C10—H10B 107.8 C38—C39—H39 119.9
C20—C21—C22 120.4 (2) C14—C13—C12 120.7 (2)
C20—C21—H21 119.8 C14—C13—H13 119.6
C22—C21—H21 119.8 C12—C13—H13 119.6
C45—C44—C43 121.1 (2) C32—C33—C34 120.3 (3)
C45—C44—H44 119.5 C32—C33—H33 119.9
C43—C44—H44 119.5 C34—C33—H33 119.9
C37—C36—C35 121.1 (2) C6—C1—N1 123.7 (2)
C37—C36—H36 119.5 C6—C1—C2 117.7 (2)
C35—C36—H36 119.5 N1—C1—C2 118.5 (2)
C17—C22—C21 120.6 (2) C42—C41—C35 125.9 (2)
C17—C22—H22 119.7 C42—C41—Pd1 71.51 (13)
C21—C22—H22 119.7 C35—C41—Pd1 115.32 (16)
C12—C11—C16 118.8 (2) C42—C41—H41 117.0
C12—C11—P1 117.87 (19) C35—C41—H41 117.0
C16—C11—P1 123.10 (19) Pd1—C41—H41 83.0
C23—C24—C25 121.2 (2) C26—C25—C24 119.6 (3)
C23—C24—H24 119.4 C26—C25—H25 120.2
C25—C24—H24 119.4 C24—C25—H25 120.2
C11—C12—C13 120.6 (2) C36—C37—C38 120.9 (3)
C11—C12—H12 119.7 C36—C37—H37 119.6
C13—C12—H12 119.7 C38—C37—H37 119.6
C18—C19—C20 120.0 (2) C29—C34—C33 121.0 (2)
C18—C19—H19 120.0 C29—C34—H34 119.5
C20—C19—H19 120.0 C33—C34—H34 119.5
C36—C35—C40 117.1 (2) C2—C3—C4 120.1 (3)
C36—C35—C41 123.2 (2) C2—C3—H3 120.0
C40—C35—C41 119.7 (2) C4—C3—H3 120.0
C1—C6—C5 120.8 (2) C7—C8—P2 113.37 (17)
C1—C6—H6 119.6 C7—C8—H8A 108.9
C5—C6—H6 119.6 P2—C8—H8A 108.9
C51—C46—C47 116.9 (2) C7—C8—H8B 108.9
C51—C46—C45 119.1 (2) P2—C8—H8B 108.9
C47—C46—C45 124.1 (2) H8A—C8—H8B 107.7
C24—C23—C28 118.7 (2) C27—C28—C23 120.5 (3)
C24—C23—P2 119.91 (18) C27—C28—H28 119.7
C28—C23—P2 121.23 (19) C23—C28—H28 119.7
C39—C40—C35 121.7 (2) C14—C15—C16 120.8 (3)
C39—C40—H40 119.2 C14—C15—H15 119.6
C35—C40—H40 119.2 C16—C15—H15 119.6
C21—C20—C19 119.4 (2) C25—C26—C27 120.0 (2)
C21—C20—H20 120.3 C25—C26—H26 120.0
C19—C20—H20 120.3 C27—C26—H26 120.0
C48—C47—C46 121.1 (2) C5—C4—C3 119.5 (3)
C48—C47—H47 119.5 C5—C4—H4 120.2
C46—C47—H47 119.5 C3—C4—H4 120.2
C13—C14—C15 119.3 (2) C48—C49—C50 119.4 (3)
C13—C14—H14 120.3 C48—C49—H49 120.3
C15—C14—H14 120.3 C50—C49—H49 120.3
C31—C30—C29 120.6 (2) C26—C27—C28 120.0 (3)
C31—C30—H30 119.7 C26—C27—H27 120.0
C29—C30—H30 119.7 C28—C27—H27 120.0
C31—C32—C33 119.9 (2) N1—C7—C8 113.58 (18)
C31—C32—H32 120.0 N1—C7—H7A 108.9
C33—C32—H32 120.0 C8—C7—H7A 108.9
C32—C31—C30 120.2 (2) N1—C7—H7B 108.9
C32—C31—H31 119.9 C8—C7—H7B 108.9
C30—C31—H31 119.9 H7A—C7—H7B 107.7
C37—C38—C39 119.1 (3) C51—C50—C49 119.8 (3)
C37—C38—H38 120.4 C51—C50—H50 120.1
C39—C38—H38 120.4 C49—C50—H50 120.1
C41—Pd1—P1—C10 102.55 (11) C47—C46—C51—C50 0.1 (4)
C42—Pd1—P1—C10 102.35 (13) C45—C46—C51—C50 179.9 (3)
P2—Pd1—P1—C10 −76.02 (9) C1—N1—C9—C10 −71.2 (3)
C41—Pd1—P1—C17 −17.26 (10) C7—N1—C9—C10 145.40 (19)
C42—Pd1—P1—C17 −17.46 (12) P1—C10—C9—N1 −67.7 (2)
P2—Pd1—P1—C17 164.17 (8) C1—C6—C5—C4 0.2 (4)
C41—Pd1—P1—C11 −133.85 (10) C46—C47—C48—C49 1.1 (4)
C42—Pd1—P1—C11 −134.05 (12) P1—Pd1—C42—C41 0.32 (18)
P2—Pd1—P1—C11 47.59 (8) P2—Pd1—C42—C41 178.58 (11)
C41—Pd1—P2—C29 93.86 (17) C41—Pd1—C42—C43 119.3 (2)
C42—Pd1—P2—C29 91.83 (11) P1—Pd1—C42—C43 119.61 (14)
P1—Pd1—P2—C29 −89.40 (9) P2—Pd1—C42—C43 −62.14 (15)
C41—Pd1—P2—C8 −147.22 (16) C12—C11—C16—C15 0.4 (4)
C42—Pd1—P2—C8 −149.25 (11) P1—C11—C16—C15 −173.9 (2)
P1—Pd1—P2—C8 29.51 (9) C41—C42—C43—O1 −2.2 (4)
C41—Pd1—P2—C23 −28.29 (17) Pd1—C42—C43—O1 −75.5 (2)
C42—Pd1—P2—C23 −30.32 (11) C41—C42—C43—C44 176.4 (2)
P1—Pd1—P2—C23 148.44 (9) Pd1—C42—C43—C44 103.1 (2)
C8—P2—C29—C34 −166.8 (2) C45—C44—C43—O1 6.6 (4)
C23—P2—C29—C34 89.9 (2) C45—C44—C43—C42 −172.0 (2)
Pd1—P2—C29—C34 −39.8 (2) C35—C40—C39—C38 0.0 (4)
C8—P2—C29—C30 9.7 (2) C37—C38—C39—C40 0.2 (4)
C23—P2—C29—C30 −93.6 (2) C15—C14—C13—C12 1.4 (4)
Pd1—P2—C29—C30 136.65 (19) C11—C12—C13—C14 −0.9 (4)
C10—P1—C17—C22 6.0 (2) C31—C32—C33—C34 1.7 (5)
C11—P1—C17—C22 −100.8 (2) C5—C6—C1—N1 177.7 (2)
Pd1—P1—C17—C22 132.78 (18) C5—C6—C1—C2 0.5 (3)
C10—P1—C17—C18 −175.49 (17) C9—N1—C1—C6 −9.6 (3)
C11—P1—C17—C18 77.73 (19) C7—N1—C1—C6 132.3 (2)
Pd1—P1—C17—C18 −48.67 (19) C9—N1—C1—C2 167.6 (2)
C17—P1—C10—C9 −174.41 (17) C7—N1—C1—C2 −50.6 (3)
C11—P1—C10—C9 −71.42 (19) C3—C2—C1—C6 −0.3 (3)
Pd1—P1—C10—C9 58.86 (19) C3—C2—C1—N1 −177.7 (2)
C46—C45—C44—C43 177.5 (2) C43—C42—C41—C35 161.1 (2)
C18—C17—C22—C21 −0.9 (3) Pd1—C42—C41—C35 −108.3 (2)
P1—C17—C22—C21 177.59 (18) C43—C42—C41—Pd1 −90.6 (2)
C20—C21—C22—C17 1.4 (4) C36—C35—C41—C42 34.9 (4)
C10—P1—C11—C12 137.82 (18) C40—C35—C41—C42 −146.5 (2)
C17—P1—C11—C12 −116.71 (19) C36—C35—C41—Pd1 −49.9 (3)
Pd1—P1—C11—C12 8.5 (2) C40—C35—C41—Pd1 128.7 (2)
C10—P1—C11—C16 −47.8 (2) P1—Pd1—C41—C42 −179.78 (12)
C17—P1—C11—C16 57.6 (2) P2—Pd1—C41—C42 −2.9 (2)
Pd1—P1—C11—C16 −177.17 (18) C42—Pd1—C41—C35 121.7 (2)
C16—C11—C12—C13 0.0 (3) P1—Pd1—C41—C35 −58.05 (17)
P1—C11—C12—C13 174.56 (18) P2—Pd1—C41—C35 118.79 (18)
C37—C36—C35—C40 −0.4 (4) C23—C24—C25—C26 −0.2 (4)
C37—C36—C35—C41 178.2 (2) C35—C36—C37—C38 0.7 (4)
C44—C45—C46—C51 177.1 (3) C39—C38—C37—C36 −0.6 (4)
C44—C45—C46—C47 −3.1 (4) C30—C29—C34—C33 2.6 (4)
C25—C24—C23—C28 0.7 (4) P2—C29—C34—C33 179.3 (2)
C25—C24—C23—P2 −174.62 (19) C32—C33—C34—C29 −3.2 (5)
C29—P2—C23—C24 −133.7 (2) C1—C2—C3—C4 −0.5 (4)
C8—P2—C23—C24 121.2 (2) C29—P2—C8—C7 −174.39 (16)
Pd1—P2—C23—C24 −6.3 (2) C23—P2—C8—C7 −68.07 (18)
C29—P2—C23—C28 51.0 (2) Pd1—P2—C8—C7 60.27 (18)
C8—P2—C23—C28 −54.0 (2) C24—C23—C28—C27 −1.2 (4)
Pd1—P2—C23—C28 178.47 (18) P2—C23—C28—C27 174.1 (2)
C36—C35—C40—C39 0.0 (4) C13—C14—C15—C16 −1.0 (4)
C41—C35—C40—C39 −178.7 (2) C11—C16—C15—C14 0.1 (4)
C22—C21—C20—C19 −1.5 (4) C24—C25—C26—C27 0.1 (4)
C18—C19—C20—C21 1.1 (4) C6—C5—C4—C3 −1.1 (4)
C51—C46—C47—C48 −0.9 (4) C2—C3—C4—C5 1.3 (4)
C45—C46—C47—C48 179.3 (2) C47—C48—C49—C50 −0.4 (4)
C34—C29—C30—C31 −0.5 (4) C25—C26—C27—C28 −0.5 (4)
P2—C29—C30—C31 −176.98 (19) C23—C28—C27—C26 1.1 (4)
C33—C32—C31—C30 0.4 (4) C1—N1—C7—C8 144.8 (2)
C29—C30—C31—C32 −1.0 (4) C9—N1—C7—C8 −71.7 (3)
C20—C19—C18—C17 −0.7 (3) P2—C8—C7—N1 −60.7 (2)
C22—C17—C18—C19 0.6 (3) C46—C51—C50—C49 0.5 (5)
P1—C17—C18—C19 −178.07 (18) C48—C49—C50—C51 −0.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5314).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blower, P. J., Jeffrey, J. C., Miller, J. R., Salek, S. N., Schmaljohann, D., Smith, R. J. & Went, M. J. (1997). Inorg. Chem. 36, 1578–1582. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Goddard, R., Hopp, G., Jolly, P. W., Krüger, C., Mynott, R. & Wirtz, C. (1995). J. Organomet. Chem. 486, 163–170.
  6. Hii, K. K., Thornton-Pett, M., Jutant, A. & Tooze, R. P. (1999). Organometallics, 18, 1887–1896.
  7. Kostas, I. (2001). J. Organomet. Chem. 626, 221–226.
  8. Lee, S. L., Jung, J. H., Seo, J., Yoon, I., Park, K., Lindoy, L. F. & Lee, S. S. (2006). Org. Lett. 8, 1641–1643. [DOI] [PubMed]
  9. Michos, D., Luo, X. & Crabtree, R. H. (1992). J. Chem. Soc. Dalton Trans. pp. 1735–1738.
  10. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Retbøll, M. K., Wenger, E. & Willis, A. C. (2002). Acta Cryst. E58, m275–m277.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033800/lh5314sup1.cif

e-67-m1327-sup1.cif (47.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033800/lh5314Isup2.hkl

e-67-m1327-Isup2.hkl (446.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES