Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2785–o2786. doi: 10.1107/S1600536811039158

4-((E)-{2-[N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carboximido­yl]benzyl­idene}amino)-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one

Kim Potgieter a, Eric Hosten a, Thomas Gerber a, Richard Betz a,*
PMCID: PMC3201528  PMID: 22064831

Abstract

The title compound, C30H28N6O2, is a symmetric diimine derived from ortho-dibenzaldehyde. Both C=N bonds are (E)-configured. The terminal N-bonded phenyl groups adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes inter­sect at angles of 32.35 (11) and 38.59 (10)°. In the crystal, C—H⋯O contacts connect the mol­ecules into chains along the b axis and give rise to a C 1 1(14)C 1 1(14) and a R 2 2(12) pattern on different levels of graph-set analysis. The shortest inter­centroid distance between two centroids was found at 4.2074 (11) Å between the two five-membered heterocycles.

Related literature

For the crystal structure of another diimine capable of acting as a chelate ligand, see: Yumata et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For details on puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect, see: Gade (1998).graphic file with name e-67-o2785-scheme1.jpg

Experimental

Crystal data

  • C30H28N6O2

  • M r = 504.58

  • Monoclinic, Inline graphic

  • a = 12.6048 (2) Å

  • b = 7.3389 (2) Å

  • c = 14.3877 (3) Å

  • β = 107.622 (1)°

  • V = 1268.48 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.33 × 0.15 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 12317 measured reflections

  • 3399 independent reflections

  • 2806 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.079

  • S = 1.01

  • 3399 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039158/bh2383sup1.cif

e-67-o2785-sup1.cif (25KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811039158/bh2383Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039158/bh2383Isup3.hkl

e-67-o2785-Isup3.hkl (166.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C45—H45A⋯O2i 0.98 2.59 3.535 (2) 161
C55—H55A⋯O1ii 0.98 2.61 3.536 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mr John Robbins for financial and logistical support.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to metal complexes exclusively applying comparable monodentate ligands (Gade, 1998). In our continuous efforts in elucidating the rules guiding the formation of coordination compounds applying nitrogen-containing chelate ligands, we determined the structure of the title compound to allow for comparative studies in envisioned coordination compounds. Structural information about another diimine capable of acting as a chelate ligand is apparent in the literature (Yumata et al., 2011).

Both C=N double bonds are (E)-configured. The least-squares planes defined by the five-membered heterocycles on the one hand and the central phenyl moiety on the other hand enclose angles of 3.16 (10) and 4.47 (10)°, respectively. The nitrogen-bonded phenyl moieties adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11) and 38.59 (10)°. A conformation analysis of the five-membered heterocycles (Cremer & Pople, 1975) is invariably precluded by the small puckering amplitude (Fig. 1).

In the crystal, C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are present. These are observed between H atoms of the methyl groups and the ketonic O atoms. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these interactions is C11(14)C11(14) on the unitary level and emphasizes the presence of two antidromic chains whereas a R22(12) descriptor on the binary level highlights the existence of cyclic patterns. In total, the molecules are connected to infinite chains along the crystallographic b axis. The shortest intercentroid distance between two centers of gravity was found at 4.2074 (11) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Experimental

A solution of 0.99 g of phthalaldehyde in 20 cm3 of methanol was added dropwise to a stirred solution of 3.00 g of 4-aminoantipyrine in 30 cm3 of methanol. The solution was refluxed under nitrogen for 15 minutes. Upon cooling, a yellow precipitate formed which was filtered and dried under reduced pressure. The product was recrystallized from methanol to produce yellow crystals.

Refinement

Aromatic carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups (C—H 0.98 Å) were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2008)], with U(H) set to 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 - 1 0]. Symmetry operators: ix, y - 1, z; iix, y + 1, z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C30H28N6O2 F(000) = 532
Mr = 504.58 Dx = 1.321 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5101 reflections
a = 12.6048 (2) Å θ = 2.6–28.2°
b = 7.3389 (2) Å µ = 0.09 mm1
c = 14.3877 (3) Å T = 200 K
β = 107.622 (1)° Rod, yellow
V = 1268.48 (5) Å3 0.33 × 0.15 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 2806 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
graphite θmax = 28.3°, θmin = 2.6°
φ and ω scans h = −16→16
12317 measured reflections k = −9→9
3399 independent reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
3399 reflections (Δ/σ)max < 0.001
347 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.18 e Å3
0 constraints

Special details

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (2450 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22361 (12) −0.1543 (2) 0.36994 (11) 0.0389 (3)
O2 0.08533 (11) 0.2814 (2) 0.22952 (10) 0.0368 (3)
N1 0.43019 (13) −0.2449 (2) 0.30112 (11) 0.0319 (4)
N2 0.24983 (12) 0.3960 (2) 0.11404 (11) 0.0307 (4)
N3 0.26332 (13) −0.4405 (2) 0.44041 (11) 0.0313 (4)
N4 0.34923 (13) −0.5696 (2) 0.45284 (12) 0.0329 (4)
N5 0.01135 (12) 0.5670 (2) 0.17718 (11) 0.0290 (3)
N6 0.02704 (13) 0.7000 (2) 0.11152 (11) 0.0307 (4)
C1 0.38269 (15) −0.1028 (3) 0.25442 (13) 0.0300 (4)
H1 0.3122 −0.0659 0.2590 0.036*
C2 0.28998 (15) 0.2528 (3) 0.16189 (13) 0.0287 (4)
H2 0.2550 0.2004 0.2054 0.034*
C11 0.43573 (14) 0.0033 (3) 0.19412 (12) 0.0271 (4)
C12 0.39117 (14) 0.1687 (3) 0.14939 (12) 0.0268 (4)
C13 0.44707 (14) 0.2614 (3) 0.09350 (13) 0.0320 (4)
H13 0.4179 0.3738 0.0638 0.038*
C14 0.54326 (16) 0.1942 (3) 0.08029 (14) 0.0362 (5)
H14 0.5793 0.2586 0.0411 0.043*
C15 0.58734 (15) 0.0316 (3) 0.12471 (14) 0.0353 (5)
H15 0.6542 −0.0152 0.1165 0.042*
C16 0.53411 (15) −0.0616 (3) 0.18057 (13) 0.0331 (5)
H16 0.5650 −0.1728 0.2106 0.040*
C21 0.19608 (15) −0.4426 (3) 0.50392 (12) 0.0291 (4)
C22 0.23326 (16) −0.5253 (3) 0.59461 (13) 0.0366 (5)
H22 0.3059 −0.5760 0.6168 0.044*
C23 0.16325 (18) −0.5334 (3) 0.65265 (14) 0.0410 (5)
H23 0.1877 −0.5922 0.7143 0.049*
C24 0.05832 (18) −0.4567 (3) 0.62151 (15) 0.0404 (5)
H24 0.0104 −0.4637 0.6612 0.048*
C25 0.02366 (17) −0.3697 (3) 0.53213 (14) 0.0387 (5)
H25 −0.0478 −0.3143 0.5112 0.046*
C26 0.09157 (15) −0.3625 (3) 0.47301 (14) 0.0331 (4)
H26 0.0670 −0.3030 0.4115 0.040*
C31 −0.09471 (14) 0.5517 (3) 0.19288 (12) 0.0266 (4)
C32 −0.19051 (15) 0.6147 (3) 0.12384 (13) 0.0308 (4)
H32 −0.1866 0.6711 0.0655 0.037*
C33 −0.29113 (15) 0.5939 (3) 0.14162 (15) 0.0371 (5)
H33 −0.3572 0.6365 0.0950 0.044*
C34 −0.29758 (16) 0.5124 (3) 0.22569 (16) 0.0398 (5)
H34 −0.3677 0.4997 0.2369 0.048*
C35 −0.20286 (16) 0.4491 (3) 0.29363 (15) 0.0389 (5)
H35 −0.2074 0.3923 0.3516 0.047*
C36 −0.10063 (15) 0.4686 (3) 0.27696 (13) 0.0315 (4)
H36 −0.0349 0.4248 0.3235 0.038*
C41 0.27970 (16) −0.2948 (3) 0.38473 (13) 0.0308 (4)
C42 0.37715 (15) −0.3447 (3) 0.35641 (13) 0.0300 (4)
C43 0.41402 (15) −0.5094 (3) 0.39719 (13) 0.0312 (4)
C44 0.51017 (17) −0.6187 (3) 0.38933 (15) 0.0396 (5)
H44A 0.4831 −0.7214 0.3449 0.059*
H44B 0.5521 −0.6650 0.4539 0.059*
H44C 0.5587 −0.5419 0.3640 0.059*
C45 0.31200 (19) −0.7619 (3) 0.44471 (16) 0.0425 (5)
H45A 0.2540 −0.7801 0.3823 0.064*
H45B 0.2821 −0.7909 0.4984 0.064*
H45C 0.3753 −0.8419 0.4480 0.064*
C51 0.08748 (14) 0.4251 (3) 0.18620 (13) 0.0275 (4)
C52 0.15879 (14) 0.4847 (3) 0.12943 (12) 0.0271 (4)
C53 0.12091 (14) 0.6489 (3) 0.08866 (13) 0.0293 (4)
C54 0.16732 (17) 0.7650 (3) 0.02611 (16) 0.0416 (5)
H54A 0.1097 0.7886 −0.0358 0.062*
H54B 0.2302 0.7024 0.0135 0.062*
H54C 0.1927 0.8808 0.0593 0.062*
C55 0.01693 (18) 0.8901 (3) 0.14159 (16) 0.0388 (5)
H55A 0.0748 0.9148 0.2033 0.058*
H55B −0.0566 0.9082 0.1502 0.058*
H55C 0.0259 0.9734 0.0913 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0467 (8) 0.0251 (8) 0.0483 (8) 0.0089 (6) 0.0195 (7) 0.0109 (7)
O2 0.0414 (7) 0.0240 (7) 0.0490 (8) 0.0088 (6) 0.0198 (6) 0.0133 (7)
N1 0.0374 (8) 0.0270 (9) 0.0305 (8) 0.0042 (7) 0.0091 (7) 0.0037 (7)
N2 0.0318 (8) 0.0291 (9) 0.0310 (8) 0.0045 (7) 0.0092 (6) 0.0042 (7)
N3 0.0403 (8) 0.0223 (8) 0.0312 (8) 0.0030 (7) 0.0107 (7) 0.0050 (7)
N4 0.0438 (9) 0.0217 (9) 0.0321 (8) 0.0054 (7) 0.0100 (7) 0.0052 (7)
N5 0.0335 (8) 0.0206 (8) 0.0336 (8) 0.0058 (7) 0.0114 (6) 0.0068 (7)
N6 0.0366 (8) 0.0204 (8) 0.0344 (8) 0.0042 (7) 0.0099 (7) 0.0059 (7)
C1 0.0315 (9) 0.0276 (11) 0.0315 (9) 0.0026 (8) 0.0105 (8) 0.0007 (9)
C2 0.0312 (9) 0.0277 (10) 0.0281 (9) 0.0025 (8) 0.0104 (7) 0.0032 (8)
C11 0.0296 (8) 0.0264 (10) 0.0245 (8) 0.0011 (8) 0.0070 (7) −0.0017 (8)
C12 0.0282 (8) 0.0273 (10) 0.0239 (8) 0.0002 (8) 0.0066 (7) −0.0012 (8)
C13 0.0335 (9) 0.0291 (10) 0.0332 (10) −0.0002 (8) 0.0098 (8) 0.0048 (9)
C14 0.0336 (10) 0.0413 (12) 0.0359 (10) −0.0052 (9) 0.0139 (8) 0.0003 (10)
C15 0.0284 (9) 0.0426 (13) 0.0364 (10) 0.0035 (9) 0.0122 (8) −0.0048 (10)
C16 0.0323 (9) 0.0329 (12) 0.0336 (10) 0.0062 (9) 0.0091 (8) −0.0001 (9)
C21 0.0390 (9) 0.0216 (9) 0.0264 (9) −0.0042 (8) 0.0096 (7) −0.0013 (8)
C22 0.0444 (10) 0.0319 (11) 0.0301 (9) −0.0030 (10) 0.0063 (8) 0.0033 (9)
C23 0.0595 (12) 0.0352 (12) 0.0276 (9) −0.0059 (11) 0.0123 (9) 0.0027 (9)
C24 0.0546 (12) 0.0329 (12) 0.0384 (11) −0.0105 (10) 0.0214 (9) −0.0036 (10)
C25 0.0432 (11) 0.0308 (11) 0.0433 (11) −0.0034 (10) 0.0150 (9) −0.0026 (10)
C26 0.0415 (10) 0.0262 (10) 0.0297 (9) −0.0016 (9) 0.0078 (8) 0.0022 (8)
C31 0.0299 (8) 0.0205 (9) 0.0293 (9) 0.0045 (8) 0.0087 (7) −0.0040 (8)
C32 0.0386 (10) 0.0265 (10) 0.0260 (9) 0.0090 (9) 0.0081 (8) −0.0019 (8)
C33 0.0336 (9) 0.0340 (12) 0.0395 (10) 0.0091 (9) 0.0049 (8) −0.0032 (9)
C34 0.0349 (10) 0.0364 (12) 0.0521 (12) 0.0032 (9) 0.0191 (9) −0.0012 (10)
C35 0.0481 (11) 0.0319 (11) 0.0404 (11) 0.0060 (10) 0.0189 (9) 0.0049 (10)
C36 0.0360 (9) 0.0258 (10) 0.0310 (9) 0.0048 (8) 0.0076 (8) 0.0023 (8)
C41 0.0381 (10) 0.0243 (10) 0.0278 (9) −0.0006 (8) 0.0063 (8) 0.0004 (8)
C42 0.0351 (9) 0.0259 (10) 0.0265 (9) 0.0018 (8) 0.0059 (8) 0.0015 (8)
C43 0.0385 (10) 0.0273 (10) 0.0247 (8) 0.0030 (9) 0.0049 (8) −0.0009 (8)
C44 0.0460 (11) 0.0332 (12) 0.0383 (11) 0.0103 (10) 0.0105 (9) 0.0043 (9)
C45 0.0575 (13) 0.0220 (11) 0.0477 (12) 0.0051 (10) 0.0155 (10) 0.0060 (10)
C51 0.0307 (9) 0.0218 (10) 0.0282 (9) 0.0032 (8) 0.0061 (7) 0.0010 (8)
C52 0.0297 (8) 0.0235 (9) 0.0263 (8) 0.0027 (8) 0.0059 (7) 0.0018 (8)
C53 0.0312 (9) 0.0264 (10) 0.0288 (9) 0.0011 (8) 0.0071 (7) 0.0021 (9)
C54 0.0453 (11) 0.0335 (12) 0.0472 (12) 0.0035 (10) 0.0158 (10) 0.0145 (11)
C55 0.0514 (12) 0.0197 (10) 0.0451 (12) 0.0061 (9) 0.0142 (10) 0.0041 (9)

Geometric parameters (Å, °)

O1—C41 1.232 (2) C23—H23 0.9500
O2—C51 1.229 (2) C24—C25 1.383 (3)
N1—C1 1.286 (3) C24—H24 0.9500
N1—C42 1.392 (2) C25—C26 1.378 (3)
N2—C2 1.274 (2) C25—H25 0.9500
N2—C52 1.394 (2) C26—H26 0.9500
N3—C41 1.389 (2) C31—C36 1.377 (3)
N3—N4 1.409 (2) C31—C32 1.390 (2)
N3—C21 1.422 (2) C32—C33 1.376 (3)
N4—C43 1.378 (2) C32—H32 0.9500
N4—C45 1.481 (3) C33—C34 1.374 (3)
N5—C51 1.395 (2) C33—H33 0.9500
N5—N6 1.413 (2) C34—C35 1.375 (3)
N5—C31 1.426 (2) C34—H34 0.9500
N6—C53 1.373 (2) C35—C36 1.388 (3)
N6—C55 1.478 (3) C35—H35 0.9500
C1—C11 1.469 (3) C36—H36 0.9500
C1—H1 0.9500 C41—C42 1.453 (3)
C2—C12 1.476 (3) C42—C43 1.362 (3)
C2—H2 0.9500 C43—C44 1.486 (3)
C11—C16 1.396 (2) C44—H44A 0.9800
C11—C12 1.408 (3) C44—H44B 0.9800
C12—C13 1.396 (3) C44—H44C 0.9800
C13—C14 1.374 (3) C45—H45A 0.9800
C13—H13 0.9500 C45—H45B 0.9800
C14—C15 1.388 (3) C45—H45C 0.9800
C14—H14 0.9500 C51—C52 1.453 (3)
C15—C16 1.375 (3) C52—C53 1.362 (3)
C15—H15 0.9500 C53—C54 1.482 (3)
C16—H16 0.9500 C54—H54A 0.9800
C21—C22 1.386 (3) C54—H54B 0.9800
C21—C26 1.387 (3) C54—H54C 0.9800
C22—C23 1.388 (3) C55—H55A 0.9800
C22—H22 0.9500 C55—H55B 0.9800
C23—C24 1.381 (3) C55—H55C 0.9800
C1—N1—C42 119.80 (16) C32—C31—N5 120.91 (16)
C2—N2—C52 120.71 (16) C33—C32—C31 118.70 (17)
C41—N3—N4 110.38 (14) C33—C32—H32 120.7
C41—N3—C21 126.90 (16) C31—C32—H32 120.7
N4—N3—C21 119.75 (15) C34—C33—C32 121.04 (18)
C43—N4—N3 106.19 (15) C34—C33—H33 119.5
C43—N4—C45 119.27 (17) C32—C33—H33 119.5
N3—N4—C45 114.69 (16) C33—C34—C35 120.20 (18)
C51—N5—N6 110.25 (14) C33—C34—H34 119.9
C51—N5—C31 125.29 (16) C35—C34—H34 119.9
N6—N5—C31 119.20 (14) C34—C35—C36 119.62 (19)
C53—N6—N5 106.08 (14) C34—C35—H35 120.2
C53—N6—C55 119.00 (17) C36—C35—H35 120.2
N5—N6—C55 114.48 (15) C31—C36—C35 119.86 (17)
N1—C1—C11 121.03 (17) C31—C36—H36 120.1
N1—C1—H1 119.5 C35—C36—H36 120.1
C11—C1—H1 119.5 O1—C41—N3 124.51 (18)
N2—C2—C12 119.71 (17) O1—C41—C42 130.71 (19)
N2—C2—H2 120.1 N3—C41—C42 104.68 (16)
C12—C2—H2 120.1 C43—C42—N1 123.54 (18)
C16—C11—C12 118.59 (17) C43—C42—C41 108.06 (17)
C16—C11—C1 118.93 (17) N1—C42—C41 128.35 (17)
C12—C11—C1 122.48 (16) C42—C43—N4 110.47 (17)
C13—C12—C11 118.83 (17) C42—C43—C44 128.76 (19)
C13—C12—C2 118.15 (17) N4—C43—C44 120.76 (18)
C11—C12—C2 122.98 (17) C43—C44—H44A 109.5
C14—C13—C12 121.67 (19) C43—C44—H44B 109.5
C14—C13—H13 119.2 H44A—C44—H44B 109.5
C12—C13—H13 119.2 C43—C44—H44C 109.5
C13—C14—C15 119.46 (19) H44A—C44—H44C 109.5
C13—C14—H14 120.3 H44B—C44—H44C 109.5
C15—C14—H14 120.3 N4—C45—H45A 109.5
C16—C15—C14 119.93 (18) N4—C45—H45B 109.5
C16—C15—H15 120.0 H45A—C45—H45B 109.5
C14—C15—H15 120.0 N4—C45—H45C 109.5
C15—C16—C11 121.53 (19) H45A—C45—H45C 109.5
C15—C16—H16 119.2 H45B—C45—H45C 109.5
C11—C16—H16 119.2 O2—C51—N5 124.56 (17)
C22—C21—C26 120.34 (18) O2—C51—C52 130.96 (17)
C22—C21—N3 120.80 (17) N5—C51—C52 104.37 (16)
C26—C21—N3 118.84 (16) C53—C52—N2 122.88 (17)
C21—C22—C23 119.34 (19) C53—C52—C51 108.21 (16)
C21—C22—H22 120.3 N2—C52—C51 128.89 (17)
C23—C22—H22 120.3 C52—C53—N6 110.71 (17)
C24—C23—C22 120.54 (19) C52—C53—C54 128.22 (18)
C24—C23—H23 119.7 N6—C53—C54 121.06 (17)
C22—C23—H23 119.7 C53—C54—H54A 109.5
C23—C24—C25 119.46 (19) C53—C54—H54B 109.5
C23—C24—H24 120.3 H54A—C54—H54B 109.5
C25—C24—H24 120.3 C53—C54—H54C 109.5
C26—C25—C24 120.7 (2) H54A—C54—H54C 109.5
C26—C25—H25 119.6 H54B—C54—H54C 109.5
C24—C25—H25 119.6 N6—C55—H55A 109.5
C25—C26—C21 119.52 (18) N6—C55—H55B 109.5
C25—C26—H26 120.2 H55A—C55—H55B 109.5
C21—C26—H26 120.2 N6—C55—H55C 109.5
C36—C31—C32 120.58 (17) H55A—C55—H55C 109.5
C36—C31—N5 118.48 (15) H55B—C55—H55C 109.5
C41—N3—N4—C43 −5.0 (2) C31—C32—C33—C34 0.0 (3)
C21—N3—N4—C43 −166.77 (16) C32—C33—C34—C35 −0.4 (3)
C41—N3—N4—C45 −138.91 (17) C33—C34—C35—C36 0.3 (3)
C21—N3—N4—C45 59.3 (2) C32—C31—C36—C35 −0.6 (3)
C51—N5—N6—C53 −6.49 (19) N5—C31—C36—C35 −178.99 (19)
C31—N5—N6—C53 −162.23 (16) C34—C35—C36—C31 0.2 (3)
C51—N5—N6—C55 −139.77 (17) N4—N3—C41—O1 −172.85 (17)
C31—N5—N6—C55 64.5 (2) C21—N3—C41—O1 −12.7 (3)
C42—N1—C1—C11 −178.92 (16) N4—N3—C41—C42 3.94 (19)
C52—N2—C2—C12 −175.70 (16) C21—N3—C41—C42 164.11 (16)
N1—C1—C11—C16 6.0 (3) C1—N1—C42—C43 170.82 (18)
N1—C1—C11—C12 −173.96 (17) C1—N1—C42—C41 −12.0 (3)
C16—C11—C12—C13 −0.1 (2) O1—C41—C42—C43 175.1 (2)
C1—C11—C12—C13 179.78 (17) N3—C41—C42—C43 −1.43 (19)
C16—C11—C12—C2 −177.71 (17) O1—C41—C42—N1 −2.4 (3)
C1—C11—C12—C2 2.2 (3) N3—C41—C42—N1 −178.94 (17)
N2—C2—C12—C13 7.2 (3) N1—C42—C43—N4 176.02 (17)
N2—C2—C12—C11 −175.19 (17) C41—C42—C43—N4 −1.6 (2)
C11—C12—C13—C14 0.8 (3) N1—C42—C43—C44 −2.9 (3)
C2—C12—C13—C14 178.47 (16) C41—C42—C43—C44 179.46 (18)
C12—C13—C14—C15 −1.0 (3) N3—N4—C43—C42 4.0 (2)
C13—C14—C15—C16 0.6 (3) C45—N4—C43—C42 135.41 (18)
C14—C15—C16—C11 0.0 (3) N3—N4—C43—C44 −176.99 (16)
C12—C11—C16—C15 −0.2 (3) C45—N4—C43—C44 −45.6 (3)
C1—C11—C16—C15 179.84 (17) N6—N5—C51—O2 −171.39 (17)
C41—N3—C21—C22 −137.5 (2) C31—N5—C51—O2 −17.5 (3)
N4—N3—C21—C22 21.0 (3) N6—N5—C51—C52 5.15 (19)
C41—N3—C21—C26 43.5 (3) C31—N5—C51—C52 159.09 (16)
N4—N3—C21—C26 −158.03 (17) C2—N2—C52—C53 172.22 (17)
C26—C21—C22—C23 2.5 (3) C2—N2—C52—C51 −9.2 (3)
N3—C21—C22—C23 −176.58 (19) O2—C51—C52—C53 174.31 (19)
C21—C22—C23—C24 −1.3 (3) N5—C51—C52—C53 −1.92 (19)
C22—C23—C24—C25 −0.7 (3) O2—C51—C52—N2 −4.4 (3)
C23—C24—C25—C26 1.5 (3) N5—C51—C52—N2 179.37 (17)
C24—C25—C26—C21 −0.4 (3) N2—C52—C53—N6 176.71 (16)
C22—C21—C26—C25 −1.6 (3) C51—C52—C53—N6 −2.1 (2)
N3—C21—C26—C25 177.43 (18) N2—C52—C53—C54 −2.3 (3)
C51—N5—C31—C36 49.2 (3) C51—C52—C53—C54 178.90 (19)
N6—N5—C31—C36 −159.00 (17) N5—N6—C53—C52 5.20 (19)
C51—N5—C31—C32 −129.2 (2) C55—N6—C53—C52 135.95 (18)
N6—N5—C31—C32 22.7 (3) N5—N6—C53—C54 −175.71 (17)
C36—C31—C32—C33 0.5 (3) C55—N6—C53—C54 −45.0 (3)
N5—C31—C32—C33 178.85 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C45—H45A···O2i 0.98 2.59 3.535 (2) 161.
C55—H55A···O1ii 0.98 2.61 3.536 (3) 158.

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2383).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley–VCH.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yumata, N., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o2175. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039158/bh2383sup1.cif

e-67-o2785-sup1.cif (25KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811039158/bh2383Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039158/bh2383Isup3.hkl

e-67-o2785-Isup3.hkl (166.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES