Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2742. doi: 10.1107/S1600536811036713

5-(4-Fluoro­phen­yl)-3-methyl­sulfanyl-2-phenyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3201533  PMID: 22065057

Abstract

In the title compound, C21H15FOS, the dihedral angle between the mean plane of the benzofuran fragment and the mean planes of the pendant 4-fluoro­benzene and phenyl rings are 31.72 (6)° and 32.51 (6)°, respectively. In the crystal, the mol­ecules are linked by weak C—H⋯π inter­actions. The crystal studied was a merohedral twin with a 0.62 (9):0.38 (9) domain ratio.

Related literature

For background to the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of 2-(4-halophen­yl)-3-methyl­sulfanyl-5-phenyl-1-benzo­furan drivatives, see: Choi et al. (2009, 2010).graphic file with name e-67-o2742-scheme1.jpg

Experimental

Crystal data

  • C21H15FOS

  • M r = 334.39

  • Monoclinic, Inline graphic

  • a = 10.6439 (15) Å

  • b = 7.2006 (10) Å

  • c = 11.7226 (17) Å

  • β = 115.396 (2)°

  • V = 811.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.36 × 0.29 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.928, T max = 0.979

  • 7372 measured reflections

  • 3194 independent reflections

  • 2540 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 1.10

  • 3194 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1278 Friedel pairs

  • Flack parameter: 0.38 (9)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036713/hb6402sup1.cif

e-67-o2742-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036713/hb6402Isup2.hkl

e-67-o2742-Isup2.hkl (156.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036713/hb6402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C15–C20 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cgi 0.95 2.76 3.448 (2) 130

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Recently, many compounds having a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 2-(4-halophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report herein the crystal structure of the title compound.

The title compound crystallizes as the non-centrosymmetric space group P21 in spite of having no asymmetric C atoms. The crystal studied was an inversion twin with a 0.68 (9) : 0.32 (9) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofurn fragment is 31.72 (6)°. The dihedral angle between the phenyl ring and the mean plane of the benzofurn fragment is 32.51 (6)°. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the phenyl ring (Table 1; C14—H14···Cgi, Cg is the centroid of the C15–C20 phenyl ring).

Experimental

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-fluoro-4'-hydroxybiphenyl (376 mg, 2.0 mmol) and 2-chloro-2-methylsulfanylacetophenone (401 mg, 2.0 mmol) in dichloromethane (30 mL) at room temperature, and stirring was continued at the same temperature for 1 h. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–benzene, 5:2 v/v) to afford the title compound as a colorless solid [yield 61%, m.p. 415–416 K; Rf = 0.78 (hexane–benzene, 5:2 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound in carbon tetrachloride at room temperature.

Refinement

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) - x + 1, y - 1/2, - z + 1; (ii) - x + 1, y + 1/2, - z + 1.]

Crystal data

C21H15FOS F(000) = 348
Mr = 334.39 Dx = 1.368 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2652 reflections
a = 10.6439 (15) Å θ = 3.4–26.6°
b = 7.2006 (10) Å µ = 0.21 mm1
c = 11.7226 (17) Å T = 173 K
β = 115.396 (2)° Block, colourless
V = 811.6 (2) Å3 0.36 × 0.29 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 3194 independent reflections
Radiation source: rotating anode 2540 reflections with I > 2σ(I)
graphite multilayer Rint = 0.035
Detector resolution: 10.0 pixels mm-1 θmax = 27.0°, θmin = 1.9°
φ and ω scans h = −12→13
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −8→9
Tmin = 0.928, Tmax = 0.979 l = −14→14
7372 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0545P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3194 reflections Δρmax = 0.21 e Å3
219 parameters Δρmin = −0.20 e Å3
1 restraint Absolute structure: Flack (1983), 1278 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.38 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42262 (6) 0.39699 (11) 0.12213 (5) 0.03595 (18)
F1 1.34923 (15) 0.4759 (3) 0.74321 (14) 0.0487 (4)
O1 0.34169 (16) 0.4817 (2) 0.41757 (13) 0.0299 (4)
C1 0.4191 (2) 0.4505 (3) 0.26649 (19) 0.0269 (5)
C2 0.5384 (2) 0.4604 (3) 0.38747 (19) 0.0259 (5)
C3 0.6812 (2) 0.4542 (3) 0.42791 (19) 0.0280 (5)
H3 0.7195 0.4416 0.3685 0.034*
C4 0.7681 (2) 0.4667 (3) 0.5565 (2) 0.0272 (5)
C5 0.7074 (3) 0.4836 (4) 0.6427 (2) 0.0306 (5)
H5 0.7670 0.4914 0.7303 0.037*
C6 0.5661 (3) 0.4890 (4) 0.6047 (2) 0.0327 (6)
H6 0.5269 0.4998 0.6635 0.039*
C7 0.4842 (2) 0.4781 (4) 0.47627 (19) 0.0273 (5)
C8 0.3042 (2) 0.4667 (3) 0.28925 (19) 0.0272 (5)
C9 0.9222 (2) 0.4655 (3) 0.60428 (19) 0.0264 (5)
C10 0.9871 (3) 0.5412 (3) 0.5334 (2) 0.0294 (5)
H10 0.9317 0.5924 0.4526 0.035*
C11 1.1301 (3) 0.5429 (3) 0.5785 (2) 0.0307 (5)
H11 1.1734 0.5928 0.5294 0.037*
C12 1.2080 (2) 0.4703 (4) 0.6967 (2) 0.0329 (5)
C13 1.1500 (2) 0.3955 (4) 0.7699 (2) 0.0330 (5)
H13 1.2067 0.3478 0.8515 0.040*
C14 1.0067 (2) 0.3910 (4) 0.72242 (18) 0.0290 (5)
H14 0.9648 0.3359 0.7712 0.035*
C15 0.1550 (2) 0.4714 (3) 0.2092 (2) 0.0274 (5)
C16 0.0615 (2) 0.4006 (4) 0.25293 (19) 0.0312 (5)
H16 0.0956 0.3464 0.3346 0.037*
C17 −0.0797 (3) 0.4087 (4) 0.1787 (2) 0.0373 (6)
H17 −0.1424 0.3593 0.2090 0.045*
C18 −0.1305 (3) 0.4888 (4) 0.0595 (2) 0.0383 (6)
H18 −0.2278 0.4939 0.0082 0.046*
C19 −0.0387 (3) 0.5614 (4) 0.0158 (2) 0.0359 (6)
H19 −0.0736 0.6180 −0.0651 0.043*
C20 0.1025 (3) 0.5520 (3) 0.0887 (2) 0.0316 (5)
H20 0.1646 0.6002 0.0573 0.038*
C21 0.4698 (4) 0.6154 (6) 0.0774 (3) 0.0679 (11)
H21A 0.3992 0.7088 0.0688 0.102*
H21B 0.4756 0.6015 −0.0033 0.102*
H21C 0.5602 0.6553 0.1425 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0428 (4) 0.0435 (3) 0.0252 (2) 0.0018 (3) 0.0181 (2) −0.0041 (3)
F1 0.0285 (9) 0.0664 (11) 0.0510 (9) −0.0028 (8) 0.0168 (7) 0.0080 (8)
O1 0.0319 (9) 0.0355 (8) 0.0257 (7) 0.0000 (8) 0.0157 (6) −0.0012 (7)
C1 0.0348 (13) 0.0234 (11) 0.0242 (10) 0.0000 (10) 0.0143 (9) −0.0008 (8)
C2 0.0336 (13) 0.0234 (10) 0.0236 (9) 0.0006 (10) 0.0152 (9) −0.0005 (8)
C3 0.0348 (13) 0.0264 (11) 0.0271 (10) 0.0023 (10) 0.0175 (9) −0.0009 (9)
C4 0.0334 (13) 0.0216 (9) 0.0287 (10) −0.0003 (11) 0.0152 (9) −0.0002 (9)
C5 0.0336 (14) 0.0354 (12) 0.0225 (10) −0.0029 (11) 0.0117 (10) −0.0021 (9)
C6 0.0386 (15) 0.0375 (14) 0.0282 (11) −0.0013 (12) 0.0204 (10) −0.0037 (10)
C7 0.0253 (13) 0.0301 (11) 0.0281 (11) 0.0002 (11) 0.0130 (9) −0.0002 (9)
C8 0.0362 (13) 0.0251 (10) 0.0224 (9) 0.0001 (11) 0.0144 (9) 0.0016 (8)
C9 0.0324 (14) 0.0223 (10) 0.0280 (10) −0.0022 (11) 0.0162 (10) −0.0031 (9)
C10 0.0371 (15) 0.0270 (11) 0.0250 (10) −0.0001 (10) 0.0142 (10) 0.0011 (9)
C11 0.0354 (15) 0.0297 (12) 0.0338 (12) −0.0021 (11) 0.0213 (11) 0.0003 (10)
C12 0.0273 (14) 0.0327 (12) 0.0400 (12) −0.0026 (12) 0.0157 (10) −0.0038 (11)
C13 0.0309 (13) 0.0363 (12) 0.0305 (10) 0.0000 (13) 0.0119 (9) 0.0017 (11)
C14 0.0339 (13) 0.0289 (10) 0.0281 (9) −0.0041 (12) 0.0170 (9) 0.0024 (11)
C15 0.0315 (13) 0.0221 (10) 0.0289 (10) 0.0027 (11) 0.0131 (9) −0.0017 (9)
C16 0.0389 (14) 0.0256 (10) 0.0321 (10) 0.0011 (12) 0.0181 (10) 0.0023 (11)
C17 0.0392 (14) 0.0305 (13) 0.0449 (12) −0.0061 (12) 0.0208 (11) −0.0044 (12)
C18 0.0296 (14) 0.0326 (14) 0.0441 (14) 0.0015 (12) 0.0076 (11) −0.0083 (11)
C19 0.0436 (17) 0.0294 (13) 0.0266 (11) 0.0027 (12) 0.0073 (11) −0.0005 (9)
C20 0.0387 (15) 0.0273 (12) 0.0303 (11) −0.0009 (11) 0.0162 (11) 0.0000 (9)
C21 0.091 (3) 0.073 (2) 0.0554 (19) −0.026 (2) 0.047 (2) 0.0069 (16)

Geometric parameters (Å, °)

S1—C1 1.752 (2) C10—H10 0.9500
S1—C21 1.796 (3) C11—C12 1.377 (3)
F1—C12 1.362 (3) C11—H11 0.9500
O1—C7 1.371 (3) C12—C13 1.365 (3)
O1—C8 1.385 (2) C13—C14 1.382 (3)
C1—C8 1.364 (3) C13—H13 0.9500
C1—C2 1.444 (3) C14—H14 0.9500
C2—C3 1.385 (3) C15—C16 1.397 (3)
C2—C7 1.396 (3) C15—C20 1.402 (3)
C3—C4 1.393 (3) C16—C17 1.378 (3)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.418 (3) C17—C18 1.388 (4)
C4—C9 1.489 (3) C17—H17 0.9500
C5—C6 1.374 (4) C18—C19 1.385 (4)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.381 (3) C19—C20 1.376 (3)
C6—H6 0.9500 C19—H19 0.9500
C8—C15 1.458 (3) C20—H20 0.9500
C9—C14 1.395 (3) C21—H21A 0.9800
C9—C10 1.399 (3) C21—H21B 0.9800
C10—C11 1.380 (3) C21—H21C 0.9800
C1—S1—C21 102.33 (13) C10—C11—H11 120.9
C7—O1—C8 106.56 (16) F1—C12—C13 118.6 (2)
C8—C1—C2 106.77 (18) F1—C12—C11 118.5 (2)
C8—C1—S1 126.90 (17) C13—C12—C11 122.9 (2)
C2—C1—S1 125.83 (17) C12—C13—C14 118.4 (2)
C3—C2—C7 119.45 (19) C12—C13—H13 120.8
C3—C2—C1 135.12 (19) C14—C13—H13 120.8
C7—C2—C1 105.4 (2) C13—C14—C9 121.4 (2)
C2—C3—C4 119.4 (2) C13—C14—H14 119.3
C2—C3—H3 120.3 C9—C14—H14 119.3
C4—C3—H3 120.3 C16—C15—C20 118.8 (2)
C3—C4—C5 118.9 (2) C16—C15—C8 120.38 (19)
C3—C4—C9 121.32 (19) C20—C15—C8 120.8 (2)
C5—C4—C9 119.82 (19) C17—C16—C15 120.6 (2)
C6—C5—C4 122.8 (2) C17—C16—H16 119.7
C6—C5—H5 118.6 C15—C16—H16 119.7
C4—C5—H5 118.6 C16—C17—C18 120.1 (2)
C5—C6—C7 116.3 (2) C16—C17—H17 119.9
C5—C6—H6 121.8 C18—C17—H17 119.9
C7—C6—H6 121.8 C19—C18—C17 119.8 (2)
O1—C7—C6 126.3 (2) C19—C18—H18 120.1
O1—C7—C2 110.47 (18) C17—C18—H18 120.1
C6—C7—C2 123.3 (2) C20—C19—C18 120.5 (2)
C1—C8—O1 110.74 (19) C20—C19—H19 119.8
C1—C8—C15 134.14 (19) C18—C19—H19 119.8
O1—C8—C15 115.12 (19) C19—C20—C15 120.2 (2)
C14—C9—C10 117.8 (2) C19—C20—H20 119.9
C14—C9—C4 120.84 (19) C15—C20—H20 119.9
C10—C9—C4 121.3 (2) S1—C21—H21A 109.5
C11—C10—C9 121.4 (2) S1—C21—H21B 109.5
C11—C10—H10 119.3 H21A—C21—H21B 109.5
C9—C10—H10 119.3 S1—C21—H21C 109.5
C12—C11—C10 118.1 (2) H21A—C21—H21C 109.5
C12—C11—H11 120.9 H21B—C21—H21C 109.5
C21—S1—C1—C8 107.9 (3) C3—C4—C9—C14 −149.0 (2)
C21—S1—C1—C2 −81.3 (2) C5—C4—C9—C14 31.9 (3)
C8—C1—C2—C3 −179.5 (3) C3—C4—C9—C10 31.9 (3)
S1—C1—C2—C3 8.2 (4) C5—C4—C9—C10 −147.2 (2)
C8—C1—C2—C7 1.3 (3) C14—C9—C10—C11 −0.2 (4)
S1—C1—C2—C7 −171.00 (18) C4—C9—C10—C11 178.9 (2)
C7—C2—C3—C4 −0.3 (3) C9—C10—C11—C12 −0.9 (3)
C1—C2—C3—C4 −179.4 (3) C10—C11—C12—F1 −178.3 (2)
C2—C3—C4—C5 0.6 (3) C10—C11—C12—C13 0.7 (4)
C2—C3—C4—C9 −178.4 (2) F1—C12—C13—C14 179.7 (2)
C3—C4—C5—C6 −0.3 (4) C11—C12—C13—C14 0.7 (4)
C9—C4—C5—C6 178.8 (2) C12—C13—C14—C9 −1.9 (4)
C4—C5—C6—C7 −0.3 (4) C10—C9—C14—C13 1.7 (4)
C8—O1—C7—C6 −179.9 (2) C4—C9—C14—C13 −177.4 (2)
C8—O1—C7—C2 −0.2 (3) C1—C8—C15—C16 148.6 (3)
C5—C6—C7—O1 −179.7 (2) O1—C8—C15—C16 −31.5 (3)
C5—C6—C7—C2 0.7 (4) C1—C8—C15—C20 −33.4 (4)
C3—C2—C7—O1 180.0 (2) O1—C8—C15—C20 146.6 (2)
C1—C2—C7—O1 −0.7 (3) C20—C15—C16—C17 0.4 (4)
C3—C2—C7—C6 −0.3 (4) C8—C15—C16—C17 178.5 (3)
C1—C2—C7—C6 179.0 (2) C15—C16—C17—C18 −0.5 (4)
C2—C1—C8—O1 −1.5 (3) C16—C17—C18—C19 −0.3 (4)
S1—C1—C8—O1 170.70 (16) C17—C18—C19—C20 1.0 (4)
C2—C1—C8—C15 178.5 (2) C18—C19—C20—C15 −1.1 (4)
S1—C1—C8—C15 −9.3 (4) C16—C15—C20—C19 0.3 (4)
C7—O1—C8—C1 1.1 (3) C8—C15—C20—C19 −177.7 (2)
C7—O1—C8—C15 −178.9 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 phenyl ring.
D—H···A D—H H···A D···A D—H···A
C14—H14···Cgi 0.95 2.76 3.448 (2) 130

Symmetry codes: (i) −x+1, y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6402).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o802. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036713/hb6402sup1.cif

e-67-o2742-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036713/hb6402Isup2.hkl

e-67-o2742-Isup2.hkl (156.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036713/hb6402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES