Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2755–o2756. doi: 10.1107/S160053681103858X

(R)-2-Phen­oxy-1-(4-phenyl-2-sulfan­ylidene-1,3-oxazolidin-3-yl)ethanone

Ignez Caracelli a,*, Daniel C S Coelho b, Paulo R Olivato c, Thiago C Correra c, Alessandro Rodrigues d, Edward R T Tiekink e
PMCID: PMC3201535  PMID: 22065310

Abstract

The central 1,3-oxazolidine-2-thione ring in the title compound, C17H15NO3S, is approximately planar with maximum deviations of 0.036 (4) and −0.041 (5) Å for the O and methyl­ene-C atoms, respectively. The dihedral angles formed between this plane and the two benzene rings, which lie to the same side of the central plane, are 86.5 (2) [ring-bound benzene] and 50.6 (3)°. The ethan-1-one residue is also twisted out of the central plane, forming a O—C—N—C torsion angle of 151.5 (5)°. The dihedral angle formed by the benzene rings is 62.8 (2)° so that overall, the mol­ecule has a twisted U-shape. In the crystal, mol­ecules are linked into supra­molecular arrays two mol­ecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π inter­actions.

Related literature

For background to oxazolidine-2-thio­nes, see: Evans et al. (1981); Crimmins & King (1998); Zhang et al. (2004); Shinisha & Sunoj (2010); Tamura et al. (2009). For related structures, see: Kitoh et al. (2002). For the synthesis, see: Wu et al. (2004); Rodrigues et al. (2005).graphic file with name e-67-o2755-scheme1.jpg

Experimental

Crystal data

  • C17H15NO3S

  • M r = 313.37

  • Monoclinic, Inline graphic

  • a = 33.514 (3) Å

  • b = 5.7514 (6) Å

  • c = 7.7172 (8) Å

  • β = 93.808 (7)°

  • V = 1484.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 126 K

  • 0.30 × 0.25 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 7408 measured reflections

  • 2588 independent reflections

  • 2166 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.180

  • S = 1.08

  • 2588 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983), 1143 Friedel pairs

  • Flack parameter: 0.01 (18)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103858X/hg5095sup1.cif

e-67-o2755-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103858X/hg5095Isup2.hkl

e-67-o2755-Isup2.hkl (124.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103858X/hg5095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.29 3.202 (6) 162
C9—H9⋯O3ii 0.95 2.56 3.350 (6) 140
C11—H11b⋯Siii 0.99 2.87 3.814 (5) 160
C17—H17⋯Cg1iv 0.95 2.99 3.703 (5) 133
C8—H8⋯Cg2ii 0.95 2.79 3.523 (6) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Brazilian agencies FAPESP, CNPq (fellowships to IC and PRO) and CAPES (808/2009 to IC) for financial support. We also thank Dr Charles H. Lake from Indiana University of Pennsylvania for the data collection during the American Crystallographic Association Summer Course in small mol­ecule crystallography.

supplementary crystallographic information

Comment

Since the first report in 1981 (Evans et al. 1981) exploring oxazolidin-2-ones as chiral auxiliaries in enantioselective aldol condensations, a number of related oxazolidin-2-ones and their synthetic applications have been reported. Recently, studies have shown that sulfur oxazolidine-2-thione derivatives have some advantages in terms of the asymmetric induction over the original 2-oxo analogues (Crimmins et al., 1998; Zhang et al., 2004; Shinisha et al., 2010). For this reason, the use of oxazolidine-2-thiones as chiral auxiliaries is a widely employed strategy for the total synthesis of relevant biological compounds (Tamura et al., 2009). An interesting study reported by Kitoh and collaborators (Kitoh et al., 2002) showed an alternative route to chiral 4-phenyl-1,3-oxazolidine-2-thione by optical resolution of the racemate through preferential crystallization. In this study, the crystal structure and vibrational spectra analysis of chiral 4-phenyl-1,3-oxazolidine-2-thione, (I), are reported.

The molecular structure of (I), Fig. 1, features a planar 1,3-oxazolidine-2-thione ring with the maximum deviations from the least-squares plane being 0.036 (4) for atom O1 and -0.041 (5) for atom C2. With reference to this plane, the two benzene rings are orientated to the same side and form dihedral angles of 86.5 (2) [ring-bound benzene ring] and 50.6 (2) °, respectively, with it. The ethan-1-one group is not co-planar with the five-membered ring as seen in the value of the O2—C10—N—C1 torsion angle of 151.5 (5) °; the carbonyl-O2 atom lies to the opposide side of the central plane to the benzene rings. The dihedral angle formed between the two benzene rings of 62.8 (2) ° indicates a non-parallel alignment. Overall, the molecule of (I) adopts a twisted U-shape.

The presence of C—H···O and C—H···S contacts, Table 1, leads to the formation of supramolecular 2-D arrays in the bc-plane, Fig. 2. The layers are two molecules thick. Additional stability to the layers is afforded by C—H···π interactions, Table 1. The layers with a flat topology stack along the a-direction, Fig. 3.

Experimental

The starting (R)-4-phenyloxazolidine-2-thione was synthesized from (R)-phenylglycine in three steps as previously reported (Wu et al. 2004). The phenoxyacetyl-oxazolidine- 2-thione derivative was prepared by acylation of (R)-4- phenyloxazolidine-2-thione (Rodrigues et al. 2005). The title compound was then obtained by adding DCC (N,N'-dicyclohexylcarbodiimide) (690 mg, 3.35 mmol) in one portion to an ice-cooled solution of (R)-4-phenyloxazolidine-2-thione (500 mg, 2.79 mmol), N,N-dimethylpyridin-4-amine (34 mg, 0.28 mmol) and 2-phenoxyacetic acid (510 mg, 3.35 mmol) in methylene chloride (10 ml). The resulting suspension, kept under a nitrogen atmosphere during the reaction time, was then allowed to reach r.t. After 48 h under stirring, the dicyclohexylurea formed was filtered off and the precipitate washed with methylene chloride (10 ml). The organic layers were washed with a sat. aq. solution of NaHCO3 (20 ml) and dried over Na2SO4. Filtration and evaporation of the solvent in vacuum gave the crude product which was purified by flash column chromatography on silica gel with 30% acetone in hexanes to give the pure product as a white solid (320 mg, 37%). Colourless crystals of the compound were obtained by vapour diffusion from hexane/acetone at 298 K: m.p. = 385–387 K;[α]D25 -66.7° (c 1.8, CHCl3); 1H NMR (300 MHz, CDCl3/TMS), δ (p.p.m.): 7.40–7.29 (m, 5H), 7.26–7.21 (m, 2H), 6.98–6.92 (m, 1H), 6.85–6.82 (m, 2H), 5.71 (dd,3J = 8.65 Hz, 3J = 3.24 Hz, 1H), 5.55 (AB system,Δν = 56.0 Hz, 2J = 17.7 Hz, 1H). 3C NMR (75 MHz, CDCl3/TMS); δ(p.p.m.): 184.93, 168.69, 157.60, 137.99, 129.52, 129.32, 129.14, 126.29, 121.70, 114.76, 75.26, 69.34, 62.07. Anal. calcd. for C17H15NO3S: C,65.16%; H,4.82%, N, 4.47%. Found: C,64.48%; H,4.71%, N, 4.18%. Mass Spectra: M+ = 314.0836, Exact mass = 314.0845.

Refinement

The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

A view in projection of the supramolecular 2-D array with a thickness corresponding to two molecules. The C—H···O and C—H···S contacts are shown as blue and orange dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents of (I) highlighting the stacking of layers along the a axis. The C—H···O, C—H···S and C—H···π contacts are shown as blue, orange and purple dashed lines, respectively.

Crystal data

C17H15NO3S F(000) = 656
Mr = 313.37 Dx = 1.402 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 2062 reflections
a = 33.514 (3) Å θ = 2.7–26.4°
b = 5.7514 (6) Å µ = 0.23 mm1
c = 7.7172 (8) Å T = 126 K
β = 93.808 (7)° Block, colourless
V = 1484.2 (3) Å3 0.30 × 0.25 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2166 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.064
graphite θmax = 25.0°, θmin = 2.7°
φ and ω scans h = −39→36
7408 measured reflections k = −6→6
2588 independent reflections l = −8→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1039P)2 + 1.9443P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2588 reflections Δρmax = 0.81 e Å3
199 parameters Δρmin = −0.47 e Å3
1 restraint Absolute structure: Flack (1983), 1143 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (18)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71650 (13) 0.0824 (8) 0.6314 (6) 0.0265 (11)
C2 0.70382 (14) 0.0160 (10) 0.3371 (6) 0.0298 (11)
H2A 0.6857 −0.1125 0.2984 0.036*
H2B 0.7219 0.0499 0.2439 0.036*
C3 0.67974 (14) 0.2332 (8) 0.3797 (6) 0.0248 (10)
H3 0.6906 0.3717 0.3202 0.030*
C4 0.63525 (14) 0.2206 (8) 0.3422 (6) 0.0240 (10)
C5 0.61306 (13) 0.0403 (10) 0.4132 (6) 0.0284 (10)
H5 0.6263 −0.0765 0.4823 0.034*
C6 0.57230 (14) 0.0333 (10) 0.3826 (6) 0.0311 (10)
H6 0.5574 −0.0873 0.4323 0.037*
C7 0.55245 (14) 0.2019 (10) 0.2792 (7) 0.0332 (12)
H7 0.5243 0.1948 0.2564 0.040*
C8 0.57425 (15) 0.3789 (9) 0.2104 (7) 0.0311 (11)
H8 0.5609 0.4950 0.1409 0.037*
C9 0.61494 (15) 0.3893 (8) 0.2410 (6) 0.0274 (11)
H9 0.6295 0.5126 0.1928 0.033*
C10 0.67735 (13) 0.4532 (9) 0.6533 (7) 0.0272 (11)
C11 0.67426 (15) 0.4547 (9) 0.8496 (7) 0.0318 (12)
H11A 0.6608 0.3109 0.8856 0.038*
H11B 0.7014 0.4586 0.9086 0.038*
C12 0.61226 (14) 0.6591 (8) 0.8538 (6) 0.0242 (10)
C13 0.59105 (15) 0.4913 (9) 0.7557 (6) 0.0310 (12)
H13 0.6045 0.3586 0.7149 0.037*
C14 0.55026 (14) 0.5183 (10) 0.7176 (6) 0.0319 (11)
H14 0.5360 0.4038 0.6498 0.038*
C15 0.52995 (15) 0.7094 (10) 0.7768 (7) 0.0343 (12)
H15 0.5019 0.7247 0.7525 0.041*
C16 0.55166 (17) 0.8801 (10) 0.8735 (7) 0.0358 (12)
H16 0.5382 1.0130 0.9138 0.043*
C17 0.59217 (15) 0.8566 (9) 0.9103 (6) 0.0291 (11)
H17 0.6066 0.9742 0.9741 0.035*
N 0.68964 (11) 0.2510 (7) 0.5738 (5) 0.0255 (9)
O1 0.72682 (10) −0.0467 (6) 0.4973 (4) 0.0305 (8)
O2 0.66648 (10) 0.6161 (6) 0.5650 (4) 0.0300 (8)
O3 0.65227 (10) 0.6512 (6) 0.8994 (4) 0.0306 (8)
S 0.73540 (4) 0.0379 (2) 0.82903 (16) 0.0340 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.023 (2) 0.030 (3) 0.026 (3) 0.0007 (18) 0.0016 (18) 0.001 (2)
C2 0.035 (2) 0.034 (3) 0.021 (2) 0.003 (2) −0.0009 (18) 0.000 (2)
C3 0.037 (3) 0.025 (2) 0.012 (2) 0.004 (2) 0.0019 (18) 0.0023 (19)
C4 0.035 (3) 0.023 (2) 0.014 (2) 0.0003 (19) 0.0044 (18) −0.0011 (19)
C5 0.035 (2) 0.026 (2) 0.024 (2) −0.002 (2) −0.0004 (18) 0.001 (2)
C6 0.037 (3) 0.028 (2) 0.029 (3) −0.003 (2) 0.0054 (19) −0.002 (3)
C7 0.023 (2) 0.049 (3) 0.027 (3) 0.000 (2) −0.002 (2) −0.006 (2)
C8 0.037 (3) 0.035 (3) 0.021 (3) 0.003 (2) −0.001 (2) −0.005 (2)
C9 0.039 (3) 0.025 (3) 0.019 (3) 0.002 (2) 0.004 (2) −0.002 (2)
C10 0.021 (2) 0.027 (2) 0.034 (3) −0.0025 (18) −0.001 (2) 0.000 (2)
C11 0.032 (3) 0.033 (3) 0.030 (3) 0.002 (2) −0.001 (2) 0.001 (2)
C12 0.029 (2) 0.024 (2) 0.020 (2) −0.0033 (18) 0.0030 (18) −0.001 (2)
C13 0.036 (3) 0.032 (3) 0.026 (3) −0.004 (2) 0.011 (2) −0.006 (2)
C14 0.033 (3) 0.038 (3) 0.024 (2) −0.004 (2) 0.0004 (18) −0.003 (2)
C15 0.031 (3) 0.039 (3) 0.033 (3) 0.004 (2) 0.000 (2) 0.004 (2)
C16 0.045 (3) 0.034 (3) 0.029 (3) 0.009 (2) 0.006 (2) 0.001 (2)
C17 0.040 (3) 0.027 (3) 0.020 (3) 0.000 (2) 0.003 (2) 0.000 (2)
N 0.026 (2) 0.031 (2) 0.019 (2) 0.0027 (17) −0.0002 (15) −0.0011 (18)
O1 0.0286 (18) 0.0299 (19) 0.032 (2) 0.0042 (13) −0.0022 (14) 0.0018 (15)
O2 0.0333 (19) 0.029 (2) 0.0276 (19) 0.0021 (14) 0.0027 (14) 0.0049 (16)
O3 0.036 (2) 0.0321 (18) 0.0238 (18) 0.0025 (14) 0.0029 (14) −0.0057 (15)
S 0.0338 (6) 0.0398 (7) 0.0275 (7) 0.0061 (6) −0.0047 (4) 0.0051 (6)

Geometric parameters (Å, °)

C1—O1 1.338 (6) C9—H9 0.9500
C1—N 1.377 (6) C10—O2 1.201 (6)
C1—S 1.632 (5) C10—N 1.390 (6)
C2—O1 1.458 (5) C10—C11 1.525 (7)
C2—C3 1.535 (7) C11—O3 1.416 (6)
C2—H2A 0.9900 C11—H11A 0.9900
C2—H2B 0.9900 C11—H11B 0.9900
C3—C4 1.501 (6) C12—O3 1.364 (6)
C3—N 1.516 (6) C12—C13 1.392 (7)
C3—H3 1.0000 C12—C17 1.404 (7)
C4—C9 1.394 (7) C13—C14 1.388 (7)
C4—C5 1.408 (7) C13—H13 0.9500
C5—C6 1.371 (6) C14—C15 1.386 (8)
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.396 (7) C15—C16 1.407 (8)
C6—H6 0.9500 C15—H15 0.9500
C7—C8 1.379 (8) C16—C17 1.375 (7)
C7—H7 0.9500 C16—H16 0.9500
C8—C9 1.370 (7) C17—H17 0.9500
C8—H8 0.9500
O1—C1—N 109.7 (4) O2—C10—N 119.3 (4)
O1—C1—S 122.1 (3) O2—C10—C11 121.4 (4)
N—C1—S 128.1 (4) N—C10—C11 119.0 (4)
O1—C2—C3 106.0 (4) O3—C11—C10 110.2 (4)
O1—C2—H2A 110.5 O3—C11—H11A 109.6
C3—C2—H2A 110.5 C10—C11—H11A 109.6
O1—C2—H2B 110.5 O3—C11—H11B 109.6
C3—C2—H2B 110.5 C10—C11—H11B 109.6
H2A—C2—H2B 108.7 H11A—C11—H11B 108.1
C4—C3—N 110.1 (4) O3—C12—C13 125.1 (4)
C4—C3—C2 116.7 (4) O3—C12—C17 115.5 (4)
N—C3—C2 100.5 (3) C13—C12—C17 119.4 (4)
C4—C3—H3 109.7 C14—C13—C12 119.8 (5)
N—C3—H3 109.7 C14—C13—H13 120.1
C2—C3—H3 109.7 C12—C13—H13 120.1
C9—C4—C5 118.6 (4) C15—C14—C13 121.2 (5)
C9—C4—C3 121.0 (4) C15—C14—H14 119.4
C5—C4—C3 120.3 (4) C13—C14—H14 119.4
C6—C5—C4 120.0 (5) C14—C15—C16 118.7 (5)
C6—C5—H5 120.0 C14—C15—H15 120.6
C4—C5—H5 120.0 C16—C15—H15 120.6
C5—C6—C7 120.6 (5) C17—C16—C15 120.6 (5)
C5—C6—H6 119.7 C17—C16—H16 119.7
C7—C6—H6 119.7 C15—C16—H16 119.7
C8—C7—C6 119.2 (4) C16—C17—C12 120.2 (5)
C8—C7—H7 120.4 C16—C17—H17 119.9
C6—C7—H7 120.4 C12—C17—H17 119.9
C9—C8—C7 120.8 (5) C1—N—C10 130.8 (4)
C9—C8—H8 119.6 C1—N—C3 111.6 (4)
C7—C8—H8 119.6 C10—N—C3 116.2 (4)
C8—C9—C4 120.7 (5) C1—O1—C2 111.7 (3)
C8—C9—H9 119.7 C12—O3—C11 118.5 (4)
C4—C9—H9 119.7
O1—C2—C3—C4 −124.8 (4) C15—C16—C17—C12 −1.0 (8)
O1—C2—C3—N −5.8 (5) O3—C12—C17—C16 −179.0 (5)
N—C3—C4—C9 119.5 (5) C13—C12—C17—C16 2.0 (7)
C2—C3—C4—C9 −126.8 (5) O1—C1—N—C10 −163.8 (4)
N—C3—C4—C5 −58.7 (6) S—C1—N—C10 14.6 (7)
C2—C3—C4—C5 54.9 (6) O1—C1—N—C3 1.3 (5)
C9—C4—C5—C6 −0.1 (7) S—C1—N—C3 179.7 (4)
C3—C4—C5—C6 178.1 (4) O2—C10—N—C1 151.5 (5)
C4—C5—C6—C7 1.0 (7) C11—C10—N—C1 −34.2 (7)
C5—C6—C7—C8 −1.2 (7) O2—C10—N—C3 −13.1 (6)
C6—C7—C8—C9 0.7 (7) C11—C10—N—C3 161.2 (4)
C7—C8—C9—C4 0.1 (7) C4—C3—N—C1 126.7 (4)
C5—C4—C9—C8 −0.4 (7) C2—C3—N—C1 3.0 (5)
C3—C4—C9—C8 −178.7 (4) C4—C3—N—C10 −65.8 (5)
O2—C10—C11—O3 8.6 (6) C2—C3—N—C10 170.5 (4)
N—C10—C11—O3 −165.6 (4) N—C1—O1—C2 −5.5 (5)
O3—C12—C13—C14 179.9 (4) S—C1—O1—C2 175.9 (4)
C17—C12—C13—C14 −1.2 (7) C3—C2—O1—C1 7.3 (5)
C12—C13—C14—C15 −0.5 (8) C13—C12—O3—C11 −2.3 (7)
C13—C14—C15—C16 1.5 (8) C17—C12—O3—C11 178.8 (4)
C14—C15—C16—C17 −0.7 (8) C10—C11—O3—C12 69.4 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C12–C17 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.29 3.202 (6) 162
C9—H9···O3ii 0.95 2.56 3.350 (6) 140
C11—H11b···Siii 0.99 2.87 3.814 (5) 160
C17—H17···Cg1iv 0.95 2.99 3.703 (5) 133
C8—H8···Cg2ii 0.95 2.79 3.523 (6) 135

Symmetry codes: (i) x, y−1, z; (ii) x, y, z−1; (iii) −x+3/2, y+1/2, −z+2; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5095).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chemaxon (2010). Marvinsketch. http://www.chemaxon.com
  5. Crimmins, M. T. & King, B. W. (1998). J. Am. Chem. Soc. 120, 9084–9085.
  6. Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Kitoh, S., Kunimoto, K.-K., Funaki, N., Senda, H., Kuwae, A. & Hanai, K. (2002). J. Chem. Crystallogr. 32, 547–553.
  10. Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shinisha, C. B. & Sunoj, R. B. (2010). J. Am. Chem. Soc. 132, 12319–12330. [DOI] [PubMed]
  13. Tamura, K., Nakazaki, A. & Kobayashi, S. (2009). Synlett, 15, 2449–2452.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Wu, Y., Yang, Y.-Q. & Hu, Q. (2004). J. Org. Chem. 69, 3990–3992. [DOI] [PubMed]
  16. Zhang, W., Carter, R. G. & Yokochi, F. T. (2004). J. Org. Chem. 69, 2569–2572. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103858X/hg5095sup1.cif

e-67-o2755-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103858X/hg5095Isup2.hkl

e-67-o2755-Isup2.hkl (124.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103858X/hg5095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES