Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2743–o2744. doi: 10.1107/S1600536811038529

2-(5-Bromo­pyridin-3-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Sankappa Rai b, A M Isloor c, Prakash Shetty d
PMCID: PMC3201536  PMID: 22058804

Abstract

In the title compound, C18H13BrN4O3S3, the tetra­hydro­pyridine ring adopts a half-chair conformation with the central methyl­ene-C atom of the NCH2CH2 unit at the flap. The dihedral angles between the tetra­hydro­pyridine ring and the pyridine and two thio­phene rings are 69.34 (13) 5.66 (13) and 68.63 (13)°, respectively, while the dihedral angle between the 1,3,4-oxadiazole and tetra­hydro­pyridine rings is 54.76 (13)°. The mol­ecule is stabilized by an intra­molecular C—H⋯N inter­action. In the crystal, adjacent mol­ecules are connected via bifurcated C—H⋯(N,O) hydrogen bonds, forming a chain along the b axis.

Related literature

For applications of 4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-o2743-scheme1.jpg

Experimental

Crystal data

  • C18H13BrN4O3S3

  • M r = 509.41

  • Monoclinic, Inline graphic

  • a = 7.0327 (14) Å

  • b = 7.6488 (15) Å

  • c = 36.939 (7) Å

  • β = 91.315 (5)°

  • V = 1986.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 296 K

  • 0.35 × 0.13 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.482, T max = 0.885

  • 22958 measured reflections

  • 7230 independent reflections

  • 4160 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.123

  • S = 1.02

  • 7230 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038529/tk2791sup1.cif

e-67-o2743-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038529/tk2791Isup2.hkl

e-67-o2743-Isup2.hkl (346.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038529/tk2791Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N2 0.97 2.52 3.283 (4) 136
C10—H10A⋯O3i 0.93 2.49 3.330 (3) 150
C10—H10A⋯N2i 0.93 2.42 3.183 (3) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives are extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997).

The molecular structure of the title compound, Fig. 1, contains five rings, namely, A (N3/C1,C2,C5–C7), B (N1/N2/O1/C12,C13), C (S3/C2–C5), D (S1/C8–C11) and E (N4/C14–C18). The tetrahydropyridine (N3/C1,C2,C5–C7) ring adopts a half-chair conformation with puckering parameters Q = 0.497 (3) Å, θ = 131.5 (3)° and φ = 141.6 (4)° with the flap atom at C7 [maximum deviation of -0.338 (3) Å]. The dihedral angle between the least-squares planes of the rings are A/B = 54.76 (13)°, A/C = 5.66 (13)°, A/D = 68.63 (13)°, A/E = 69.34 (13)°, B/C = 56.97 (14)°, B/D = 13.90 (14)°, B/E = 15.62 (13)°, C/D = 70.85 (13)°, and C/E = 70.88 (13)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via bifurcated C—H···N and C—H···O (Table 1) hydrogen bonds forming one-dimensional chains along the b-axis.

Experimental

To a mixture of 3-(6,7-dihydrothieno[3,2-c]pyridine-5(4H)-ylsulfonyl) thiophene-2-carbohydrazide (0.5 g, 0.0014 mol) and 5-bromopyridine-3-carboxylic acid (0.29 g, 0.0014 mol), neutral alumina (0.5 g) and POCl3, (1.1 g, 0.007 mol) were added. The resulting mixture was irradiated in a microwave oven for 5 min. Mass analysis of the crude reaction mixture confirmed completion of the reaction. The reaction mixture was concentrated and the residue was purified by column chromatography to get title compound which was recrystallised using acetone. Yield: 68%, m.p. 429–431 K.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecule of the title compound, showing 30% probability displacement ellipsoids. The dashed line represents a C—H···N interaction.

Fig. 2.

Fig. 2.

A view of the crystal packing for the title compound (I). The dashed lines represent C—H···O and C—H···N hydrogen bonds.

Crystal data

C18H13BrN4O3S3 F(000) = 1024
Mr = 509.41 Dx = 1.703 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3605 reflections
a = 7.0327 (14) Å θ = 2.7–25.9°
b = 7.6488 (15) Å µ = 2.41 mm1
c = 36.939 (7) Å T = 296 K
β = 91.315 (5)° Plate, colourless
V = 1986.5 (7) Å3 0.35 × 0.13 × 0.05 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 7230 independent reflections
Radiation source: fine-focus sealed tube 4160 reflections with I > 2σ(I)
graphite Rint = 0.051
φ and ω scans θmax = 32.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→8
Tmin = 0.482, Tmax = 0.885 k = −11→11
22958 measured reflections l = −55→52

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.8759P] where P = (Fo2 + 2Fc2)/3
7230 reflections (Δ/σ)max < 0.001
262 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.93996 (10) 0.96690 (8) 0.10025 (2) 0.04559 (16)
S2 1.36853 (8) 0.62674 (8) 0.146401 (17) 0.03714 (14)
S3 1.17503 (12) 0.51687 (12) 0.30392 (2) 0.0593 (2)
Br1 0.24445 (4) −0.00049 (4) 0.017218 (10) 0.06497 (12)
O1 0.7735 (2) 0.6343 (2) 0.07860 (4) 0.0371 (4)
O2 1.5532 (2) 0.7035 (3) 0.14769 (5) 0.0505 (5)
O3 1.3410 (3) 0.4632 (2) 0.12866 (5) 0.0464 (4)
N1 0.7985 (3) 0.3595 (3) 0.09508 (7) 0.0503 (6)
N2 0.9456 (3) 0.4530 (3) 0.11199 (7) 0.0513 (6)
N3 1.3043 (3) 0.6029 (3) 0.18809 (5) 0.0358 (4)
N4 0.2436 (3) 0.5346 (4) 0.02560 (8) 0.0582 (6)
C1 1.3498 (4) 0.7466 (3) 0.21341 (7) 0.0443 (6)
H1A 1.2736 0.8485 0.2073 0.053*
H1B 1.4829 0.7781 0.2117 0.053*
C2 1.3091 (3) 0.6885 (3) 0.25127 (7) 0.0397 (5)
C3 1.3612 (4) 0.7808 (4) 0.28326 (8) 0.0555 (7)
H3A 1.4313 0.8839 0.2833 0.067*
C4 1.2989 (4) 0.7039 (5) 0.31349 (9) 0.0619 (8)
H4A 1.3206 0.7472 0.3368 0.074*
C5 1.2078 (3) 0.5430 (4) 0.25829 (7) 0.0426 (5)
C6 1.1309 (4) 0.4206 (4) 0.22997 (8) 0.0515 (7)
H6A 1.0054 0.3804 0.2365 0.062*
H6B 1.2134 0.3195 0.2281 0.062*
C7 1.1199 (4) 0.5162 (4) 0.19417 (8) 0.0453 (6)
H7A 1.0920 0.4343 0.1747 0.054*
H7B 1.0190 0.6026 0.1945 0.054*
C8 1.2147 (3) 0.7874 (3) 0.12720 (7) 0.0367 (5)
C9 1.2684 (4) 0.9644 (3) 0.13041 (8) 0.0443 (6)
H9A 1.3834 1.0013 0.1407 0.053*
C10 1.1341 (4) 1.0751 (3) 0.11683 (8) 0.0486 (6)
H10A 1.1467 1.1961 0.1166 0.058*
C11 1.0374 (3) 0.7667 (3) 0.11097 (6) 0.0366 (5)
C12 0.9260 (3) 0.6133 (3) 0.10159 (6) 0.0359 (5)
C13 0.7017 (3) 0.4705 (3) 0.07619 (7) 0.0367 (5)
C14 0.5288 (3) 0.4345 (3) 0.05505 (6) 0.0374 (5)
C15 0.4063 (4) 0.5660 (4) 0.04346 (8) 0.0492 (6)
H15A 0.4393 0.6814 0.0484 0.059*
C16 0.1984 (4) 0.3691 (4) 0.01865 (8) 0.0541 (7)
H16A 0.0842 0.3453 0.0064 0.065*
C17 0.3143 (3) 0.2309 (4) 0.02888 (7) 0.0442 (6)
C18 0.4814 (3) 0.2626 (3) 0.04777 (7) 0.0415 (5)
H18A 0.5600 0.1713 0.0554 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0598 (4) 0.0272 (3) 0.0493 (4) 0.0054 (2) −0.0094 (3) 0.0027 (3)
S2 0.0358 (3) 0.0367 (3) 0.0390 (3) 0.0038 (2) 0.0026 (2) −0.0008 (2)
S3 0.0600 (4) 0.0788 (5) 0.0392 (4) 0.0036 (4) 0.0025 (3) 0.0054 (4)
Br1 0.04669 (17) 0.0620 (2) 0.0854 (3) −0.00962 (13) −0.01522 (15) −0.01519 (17)
O1 0.0451 (9) 0.0303 (7) 0.0356 (9) 0.0030 (6) −0.0073 (7) 0.0014 (7)
O2 0.0351 (9) 0.0595 (12) 0.0571 (12) −0.0017 (8) 0.0089 (8) 0.0006 (9)
O3 0.0534 (11) 0.0408 (9) 0.0449 (11) 0.0115 (8) 0.0011 (8) −0.0084 (8)
N1 0.0554 (13) 0.0304 (10) 0.0638 (15) −0.0004 (9) −0.0274 (11) 0.0006 (10)
N2 0.0576 (13) 0.0280 (9) 0.0671 (16) −0.0017 (9) −0.0277 (12) −0.0001 (10)
N3 0.0317 (9) 0.0376 (10) 0.0379 (11) −0.0042 (7) −0.0015 (8) −0.0015 (8)
N4 0.0522 (14) 0.0607 (15) 0.0610 (16) 0.0138 (11) −0.0163 (12) 0.0063 (12)
C1 0.0475 (14) 0.0396 (12) 0.0459 (15) −0.0084 (10) 0.0007 (11) −0.0064 (11)
C2 0.0303 (11) 0.0482 (13) 0.0404 (14) 0.0004 (9) −0.0031 (10) −0.0065 (11)
C3 0.0443 (14) 0.0685 (19) 0.0534 (18) −0.0038 (13) −0.0043 (13) −0.0197 (15)
C4 0.0549 (16) 0.087 (2) 0.0439 (17) 0.0084 (15) −0.0062 (13) −0.0193 (16)
C5 0.0370 (12) 0.0512 (14) 0.0395 (14) 0.0016 (10) −0.0015 (10) 0.0004 (11)
C6 0.0537 (15) 0.0537 (15) 0.0471 (16) −0.0187 (12) 0.0028 (12) 0.0018 (13)
C7 0.0367 (12) 0.0570 (16) 0.0420 (14) −0.0119 (11) −0.0036 (10) −0.0012 (12)
C8 0.0431 (12) 0.0300 (10) 0.0369 (13) 0.0003 (9) 0.0010 (10) 0.0013 (9)
C9 0.0537 (15) 0.0346 (11) 0.0445 (15) −0.0070 (10) −0.0015 (12) −0.0003 (11)
C10 0.0658 (17) 0.0285 (11) 0.0512 (16) −0.0034 (11) −0.0048 (13) 0.0019 (11)
C11 0.0484 (13) 0.0253 (9) 0.0358 (13) 0.0025 (9) −0.0029 (10) 0.0002 (9)
C12 0.0454 (12) 0.0281 (10) 0.0338 (12) 0.0029 (9) −0.0075 (10) −0.0024 (9)
C13 0.0427 (12) 0.0313 (10) 0.0357 (12) 0.0030 (9) −0.0055 (10) −0.0023 (9)
C14 0.0410 (12) 0.0401 (12) 0.0308 (12) 0.0033 (10) −0.0042 (9) 0.0000 (10)
C15 0.0543 (15) 0.0456 (14) 0.0475 (16) 0.0079 (12) −0.0071 (12) 0.0021 (12)
C16 0.0401 (13) 0.0674 (19) 0.0542 (17) 0.0042 (13) −0.0107 (12) 0.0033 (15)
C17 0.0385 (12) 0.0524 (14) 0.0415 (14) 0.0002 (11) −0.0056 (11) −0.0016 (12)
C18 0.0373 (12) 0.0436 (12) 0.0432 (14) 0.0049 (10) −0.0076 (10) −0.0003 (11)

Geometric parameters (Å, °)

S1—C10 1.698 (3) C3—C4 1.345 (4)
S1—C11 1.720 (2) C3—H3A 0.9300
S2—O3 1.4233 (19) C4—H4A 0.9300
S2—O2 1.4248 (18) C5—C6 1.496 (4)
S2—N3 1.625 (2) C6—C7 1.512 (4)
S2—C8 1.774 (2) C6—H6A 0.9700
S3—C4 1.707 (4) C6—H6B 0.9700
S3—C5 1.718 (3) C7—H7A 0.9700
Br1—C17 1.884 (3) C7—H7B 0.9700
O1—C13 1.353 (3) C8—C11 1.381 (3)
O1—C12 1.362 (3) C8—C9 1.410 (3)
N1—C13 1.284 (3) C9—C10 1.356 (4)
N1—N2 1.394 (3) C9—H9A 0.9300
N2—C12 1.291 (3) C10—H10A 0.9300
N3—C1 1.473 (3) C11—C12 1.448 (3)
N3—C7 1.479 (3) C13—C14 1.456 (3)
N4—C15 1.329 (4) C14—C18 1.381 (3)
N4—C16 1.329 (4) C14—C15 1.386 (4)
C1—C2 1.501 (4) C15—H15A 0.9300
C1—H1A 0.9700 C16—C17 1.382 (4)
C1—H1B 0.9700 C16—H16A 0.9300
C2—C5 1.349 (4) C17—C18 1.375 (3)
C2—C3 1.417 (4) C18—H18A 0.9300
C10—S1—C11 92.19 (12) N3—C7—C6 108.8 (2)
O3—S2—O2 119.45 (11) N3—C7—H7A 109.9
O3—S2—N3 107.45 (11) C6—C7—H7A 109.9
O2—S2—N3 106.69 (11) N3—C7—H7B 109.9
O3—S2—C8 110.45 (11) C6—C7—H7B 109.9
O2—S2—C8 105.95 (11) H7A—C7—H7B 108.3
N3—S2—C8 106.06 (11) C11—C8—C9 112.6 (2)
C4—S3—C5 91.51 (15) C11—C8—S2 129.09 (17)
C13—O1—C12 102.63 (17) C9—C8—S2 118.17 (19)
C13—N1—N2 106.4 (2) C10—C9—C8 112.7 (2)
C12—N2—N1 106.31 (19) C10—C9—H9A 123.7
C1—N3—C7 114.6 (2) C8—C9—H9A 123.7
C1—N3—S2 117.19 (16) C9—C10—S1 112.13 (19)
C7—N3—S2 117.26 (16) C9—C10—H10A 123.9
C15—N4—C16 117.9 (2) S1—C10—H10A 123.9
N3—C1—C2 109.1 (2) C8—C11—C12 132.5 (2)
N3—C1—H1A 109.9 C8—C11—S1 110.41 (17)
C2—C1—H1A 109.9 C12—C11—S1 117.10 (17)
N3—C1—H1B 109.9 N2—C12—O1 112.0 (2)
C2—C1—H1B 109.9 N2—C12—C11 130.1 (2)
H1A—C1—H1B 108.3 O1—C12—C11 117.87 (19)
C5—C2—C3 112.2 (3) N1—C13—O1 112.6 (2)
C5—C2—C1 122.4 (2) N1—C13—C14 126.3 (2)
C3—C2—C1 125.3 (2) O1—C13—C14 121.0 (2)
C4—C3—C2 113.0 (3) C18—C14—C15 119.0 (2)
C4—C3—H3A 123.5 C18—C14—C13 118.6 (2)
C2—C3—H3A 123.5 C15—C14—C13 122.3 (2)
C3—C4—S3 111.7 (2) N4—C15—C14 123.0 (3)
C3—C4—H4A 124.2 N4—C15—H15A 118.5
S3—C4—H4A 124.2 C14—C15—H15A 118.5
C2—C5—C6 124.5 (2) N4—C16—C17 122.6 (3)
C2—C5—S3 111.6 (2) N4—C16—H16A 118.7
C6—C5—S3 124.0 (2) C17—C16—H16A 118.7
C5—C6—C7 108.6 (2) C18—C17—C16 119.7 (3)
C5—C6—H6A 110.0 C18—C17—Br1 119.8 (2)
C7—C6—H6A 110.0 C16—C17—Br1 120.4 (2)
C5—C6—H6B 110.0 C17—C18—C14 117.8 (2)
C7—C6—H6B 110.0 C17—C18—H18A 121.1
H6A—C6—H6B 108.3 C14—C18—H18A 121.1
C13—N1—N2—C12 −0.5 (3) C8—C9—C10—S1 0.5 (3)
O3—S2—N3—C1 170.10 (17) C11—S1—C10—C9 −0.6 (2)
O2—S2—N3—C1 40.9 (2) C9—C8—C11—C12 179.0 (3)
C8—S2—N3—C1 −71.75 (19) S2—C8—C11—C12 −5.7 (4)
O3—S2—N3—C7 −47.6 (2) C9—C8—C11—S1 −0.3 (3)
O2—S2—N3—C7 −176.79 (18) S2—C8—C11—S1 174.96 (15)
C8—S2—N3—C7 70.6 (2) C10—S1—C11—C8 0.5 (2)
C7—N3—C1—C2 45.9 (3) C10—S1—C11—C12 −178.9 (2)
S2—N3—C1—C2 −170.77 (16) N1—N2—C12—O1 0.1 (3)
N3—C1—C2—C5 −13.3 (3) N1—N2—C12—C11 179.3 (3)
N3—C1—C2—C3 170.1 (2) C13—O1—C12—N2 0.3 (3)
C5—C2—C3—C4 0.0 (4) C13—O1—C12—C11 −179.0 (2)
C1—C2—C3—C4 176.9 (3) C8—C11—C12—N2 15.1 (5)
C2—C3—C4—S3 0.0 (3) S1—C11—C12—N2 −165.6 (2)
C5—S3—C4—C3 0.0 (2) C8—C11—C12—O1 −165.8 (2)
C3—C2—C5—C6 179.2 (3) S1—C11—C12—O1 13.5 (3)
C1—C2—C5—C6 2.2 (4) N2—N1—C13—O1 0.7 (3)
C3—C2—C5—S3 0.0 (3) N2—N1—C13—C14 −177.0 (2)
C1—C2—C5—S3 −177.00 (19) C12—O1—C13—N1 −0.6 (3)
C4—S3—C5—C2 0.0 (2) C12—O1—C13—C14 177.3 (2)
C4—S3—C5—C6 −179.2 (2) N1—C13—C14—C18 −14.6 (4)
C2—C5—C6—C7 −20.7 (4) O1—C13—C14—C18 167.9 (2)
S3—C5—C6—C7 158.4 (2) N1—C13—C14—C15 162.4 (3)
C1—N3—C7—C6 −67.1 (3) O1—C13—C14—C15 −15.1 (4)
S2—N3—C7—C6 149.6 (2) C16—N4—C15—C14 −0.2 (4)
C5—C6—C7—N3 49.6 (3) C18—C14—C15—N4 0.2 (4)
O3—S2—C8—C11 29.5 (3) C13—C14—C15—N4 −176.8 (3)
O2—S2—C8—C11 160.2 (2) C15—N4—C16—C17 −0.7 (5)
N3—S2—C8—C11 −86.6 (2) N4—C16—C17—C18 1.6 (4)
O3—S2—C8—C9 −155.4 (2) N4—C16—C17—Br1 −178.6 (2)
O2—S2—C8—C9 −24.7 (2) C16—C17—C18—C14 −1.5 (4)
N3—S2—C8—C9 88.4 (2) Br1—C17—C18—C14 178.66 (19)
C11—C8—C9—C10 −0.1 (3) C15—C14—C18—C17 0.7 (4)
S2—C8—C9—C10 −175.9 (2) C13—C14—C18—C17 177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···N2 0.97 2.52 3.283 (4) 136
C10—H10A···O3i 0.93 2.49 3.330 (3) 150
C10—H10A···N2i 0.93 2.42 3.183 (3) 139

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2791).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  3. Lopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807–2811. [DOI] [PubMed]
  4. Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403–1410. [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Ying, S. W. & Rusak, B. (1997). Brain Res. 755, 246–254. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038529/tk2791sup1.cif

e-67-o2743-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038529/tk2791Isup2.hkl

e-67-o2743-Isup2.hkl (346.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038529/tk2791Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES