Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2721. doi: 10.1107/S160053681103710X

2-(2-Hy­droxy­phen­yl)-3,4-dihydro­iso­quinolin-1(2H)-one

Jian Yang a, Yanni Ma a, Meng Pan a, Fangjun Cao a, Le Zhou a,*
PMCID: PMC3201540  PMID: 22065631

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H13NO2, in both the six-membered dihydro­pyridine rings adopt a half-chair conformation. The two benzene rings make dihedral angles of 43.66 (10) and 62.22 (10)° in the two mol­ecules. In the crystal, the two independent mol­ecules are linked alternately by inter­molecular O—H⋯O hydrogen bonds, forming a zigzag chain along the c axis. Furthermore, inter­molecular C—H⋯π inter­actions link the chains into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Shaw & Zhang (2008). For the bioactivity of tetra­hydro­isoquinoline derivatives, see: Kamal et al. (2011); Liu et al. (2009); Vrba et al. (2009); Abe et al. (2005); Adhami et al. (2004); Storch et al. (2002).graphic file with name e-67-o2721-scheme1.jpg

Experimental

Crystal data

  • C15H13NO2

  • M r = 239.26

  • Monoclinic, Inline graphic

  • a = 21.350 (3) Å

  • b = 11.0670 (14) Å

  • c = 21.064 (3) Å

  • β = 100.227 (2)°

  • V = 4897.9 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.35 × 0.34 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.958, T max = 0.971

  • 17755 measured reflections

  • 4559 independent reflections

  • 2998 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.120

  • S = 1.01

  • 4559 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103710X/is2770sup1.cif

e-67-o2721-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103710X/is2770Isup2.hkl

e-67-o2721-Isup2.hkl (223.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103710X/is2770Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.84 2.6388 (18) 166
O4—H4A⋯O1 0.82 1.85 2.6668 (17) 175
C7—H7BCg2ii 0.97 2.92 3.770 (2) 147
C19—H19⋯Cg2iii 0.93 2.78 3.518 (3) 137
C23—H23ACg3iv 0.97 2.87 3.771 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 30771454, 31000865).

supplementary crystallographic information

Comment

The tetrahydroisoquinoline derivatives have recently attracted a great deal of attention because of their outstanding bioactivity, such as neurotoxicity (Abe et al., 2005; Storch et al., 2002), antitumor activity (Vrba et al., 2009; Adhami et al., 2004), antimicrobial activity (Kamal et al., 2011; Liu et al., 2009), and so on. With the interests in the synthesis of tetrahydroisoquinoline derivatives with bioactivity, we herein report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound include two independent molecules (Fig. 1), each is built up from one 3,4-dihydroisoquinolin-1(2H)-one fragment connected to one 2-hydroxybenzene ring through the C—N bond. Benzene rings C1—C6 and C10—C15 are inclined with respect to one another with a dihedral angle of 43.66 (10) °, and benzene C16—C21 and C25—C30 with a dihedral angle of 62.22 (10) °. The conformation of the six-membered heterocycle of 3,4-dihydroisoquinolin-1(2H)-one fragment is analyzed with respect to the plane formed by C1/C6/C7/C9 and the corresponding deviations of the atoms C8 and N1 are 0.852 and 0.339 Å, respectively. Meanwhile, the corresponding deviations of the atoms C23 and N2 from the plane formed by C16/C21/C22/C24 are 0.761 and 0.289 Å, respectively.

In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1) into a chain along the c axis. These chains are further connected by C—H···π interactions (C7—H7B···Cg2 and C23—H23A···Cg3; Table 1) into a sheet, where Cg2 is the centroid of the benzene C1—C6 ring and Cg3 is of the benzene C10—C15 ring. Furthermore, C19—H19···Cg2 interaction connects the sheets into three-dimension framework (Fig. 2).

Experimental

The title compound was synthesized according to the literature procedure (Shaw & Zhang, 2008). An NaOH solution (0.1 mol/L, 10 ml) was added to the solution of 2-(2-hydroxyphenyl)-3,4-dihydroisoquinolinum bromide (304 mg, 1 mmol) in ethanol (10 ml) dropwise under stirring. After 24 h, the mixture was extracted by chloroform (30 ml), dried over anhydrous Na2SO4 and evaporated under reduced pressure. Further purification by silicagel column chromatography (petroleum ether / ethyl acetate = 5:1) and recrystallization gave 85 mg the title compound (yield 36%; m.p. 433–434 K).

Refinement

H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), or 0.97 Å (methylene CH2), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Dashed lines indicate the hydrogen bonds and C—H···π interactions.

Crystal data

C15H13NO2 F(000) = 2016
Mr = 239.26 Dx = 1.298 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3281 reflections
a = 21.350 (3) Å θ = 2.5–22.2°
b = 11.0670 (14) Å µ = 0.09 mm1
c = 21.064 (3) Å T = 296 K
β = 100.227 (2)° Block, colourless
V = 4897.9 (11) Å3 0.50 × 0.35 × 0.34 mm
Z = 16

Data collection

Bruker APEXII CCD area-detector diffractometer 4559 independent reflections
Radiation source: fine-focus sealed tube 2998 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→25
Tmin = 0.958, Tmax = 0.971 k = −13→13
17755 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0584P)2 + 1.0944P] where P = (Fo2 + 2Fc2)/3
4559 reflections (Δ/σ)max = 0.001
326 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.64702 (8) 1.22521 (16) 0.96814 (8) 0.0475 (4)
C2 0.64055 (9) 1.20334 (19) 0.90234 (9) 0.0557 (5)
H2 0.6244 1.1297 0.8855 0.067*
C3 0.65796 (10) 1.2900 (2) 0.86179 (10) 0.0669 (6)
H3 0.6529 1.2752 0.8177 0.080*
C4 0.68274 (10) 1.3979 (2) 0.88650 (12) 0.0726 (6)
H4 0.6942 1.4566 0.8591 0.087*
C5 0.69074 (10) 1.41978 (19) 0.95193 (12) 0.0665 (6)
H5 0.7086 1.4924 0.9684 0.080*
C6 0.67252 (8) 1.33481 (17) 0.99346 (9) 0.0529 (5)
C7 0.67903 (10) 1.35321 (18) 1.06454 (10) 0.0646 (6)
H7A 0.6800 1.4390 1.0741 0.077*
H7B 0.7186 1.3178 1.0863 0.077*
C8 0.62387 (10) 1.29515 (17) 1.08845 (9) 0.0599 (5)
H8A 0.6301 1.3014 1.1351 0.072*
H8B 0.5849 1.3373 1.0707 0.072*
C9 0.62857 (8) 1.13100 (17) 1.01102 (8) 0.0463 (4)
C10 0.60218 (8) 1.08107 (17) 1.11477 (8) 0.0490 (4)
C11 0.64429 (8) 1.06340 (17) 1.17237 (8) 0.0501 (5)
C12 0.62941 (10) 0.9830 (2) 1.21757 (9) 0.0626 (5)
H12 0.6573 0.9722 1.2564 0.075*
C13 0.57360 (11) 0.9192 (2) 1.20525 (11) 0.0732 (6)
H13 0.5637 0.8650 1.2358 0.088*
C14 0.53190 (10) 0.9349 (2) 1.14774 (12) 0.0763 (7)
H14 0.4943 0.8906 1.1394 0.092*
C15 0.54588 (9) 1.0160 (2) 1.10293 (10) 0.0630 (5)
H15 0.5174 1.0273 1.0645 0.076*
C16 0.87970 (8) 0.86788 (16) 0.85716 (8) 0.0486 (4)
C17 0.91880 (9) 0.92042 (19) 0.81889 (10) 0.0631 (5)
H17 0.9022 0.9415 0.7765 0.076*
C18 0.98214 (10) 0.9416 (2) 0.84322 (12) 0.0776 (7)
H18 1.0083 0.9763 0.8173 0.093*
C19 1.00639 (11) 0.9113 (2) 0.90587 (13) 0.0839 (7)
H19 1.0489 0.9268 0.9227 0.101*
C20 0.96817 (11) 0.8582 (2) 0.94387 (11) 0.0792 (7)
H20 0.9853 0.8378 0.9862 0.095*
C21 0.90435 (9) 0.83423 (18) 0.92027 (9) 0.0570 (5)
C22 0.86093 (10) 0.7762 (2) 0.95990 (9) 0.0669 (6)
H22A 0.8428 0.8378 0.9839 0.080*
H22B 0.8852 0.7210 0.9906 0.080*
C23 0.80834 (10) 0.70835 (19) 0.91819 (9) 0.0610 (5)
H23A 0.8255 0.6360 0.9017 0.073*
H23B 0.7771 0.6837 0.9439 0.073*
C24 0.81068 (9) 0.85581 (16) 0.83172 (8) 0.0477 (4)
C25 0.70918 (8) 0.77602 (15) 0.84686 (8) 0.0458 (4)
C26 0.67305 (8) 0.84301 (15) 0.88288 (8) 0.0445 (4)
C27 0.60732 (9) 0.83775 (18) 0.86810 (9) 0.0555 (5)
H27 0.5829 0.8822 0.8922 0.067*
C28 0.57827 (10) 0.7672 (2) 0.81807 (10) 0.0678 (6)
H28 0.5341 0.7645 0.8082 0.081*
C29 0.61354 (11) 0.7005 (2) 0.78239 (10) 0.0713 (6)
H29 0.5933 0.6528 0.7485 0.086*
C30 0.67912 (10) 0.70412 (18) 0.79681 (9) 0.0613 (5)
H30 0.7031 0.6583 0.7729 0.074*
N1 0.61817 (7) 1.16666 (13) 1.06934 (7) 0.0495 (4)
N2 0.77725 (7) 0.78299 (13) 0.86388 (7) 0.0482 (4)
O1 0.62296 (6) 1.02339 (11) 0.99405 (6) 0.0565 (3)
O2 0.69906 (6) 1.12681 (14) 1.18018 (6) 0.0672 (4)
H2A 0.7209 1.1098 1.2151 0.101*
O3 0.78604 (6) 0.91442 (13) 0.78357 (6) 0.0650 (4)
O4 0.70448 (6) 0.91102 (12) 0.93171 (6) 0.0584 (4)
H4A 0.6787 0.9484 0.9488 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0401 (10) 0.0511 (11) 0.0487 (10) 0.0066 (8) 0.0008 (8) −0.0025 (9)
C2 0.0509 (11) 0.0617 (12) 0.0527 (11) 0.0019 (9) 0.0040 (9) −0.0010 (10)
C3 0.0659 (14) 0.0788 (15) 0.0570 (12) 0.0069 (12) 0.0133 (10) 0.0084 (11)
C4 0.0673 (14) 0.0702 (15) 0.0847 (17) 0.0048 (12) 0.0252 (12) 0.0157 (13)
C5 0.0536 (12) 0.0548 (12) 0.0909 (17) −0.0009 (10) 0.0122 (11) 0.0018 (12)
C6 0.0422 (10) 0.0517 (11) 0.0620 (12) 0.0061 (9) 0.0014 (8) −0.0054 (10)
C7 0.0681 (13) 0.0524 (12) 0.0678 (13) −0.0005 (10) −0.0025 (10) −0.0135 (10)
C8 0.0706 (13) 0.0551 (12) 0.0510 (11) 0.0115 (10) 0.0029 (9) −0.0133 (9)
C9 0.0409 (10) 0.0511 (11) 0.0437 (10) 0.0058 (8) −0.0008 (8) −0.0085 (9)
C10 0.0434 (10) 0.0593 (11) 0.0445 (10) 0.0055 (9) 0.0084 (8) −0.0114 (9)
C11 0.0420 (10) 0.0637 (12) 0.0445 (10) 0.0013 (9) 0.0078 (8) −0.0092 (9)
C12 0.0604 (13) 0.0782 (14) 0.0496 (11) 0.0048 (11) 0.0110 (9) −0.0009 (10)
C13 0.0717 (15) 0.0833 (16) 0.0704 (15) −0.0019 (13) 0.0285 (12) 0.0020 (12)
C14 0.0559 (13) 0.0919 (17) 0.0847 (17) −0.0173 (12) 0.0228 (12) −0.0132 (14)
C15 0.0455 (11) 0.0835 (15) 0.0593 (12) 0.0020 (11) 0.0071 (9) −0.0134 (11)
C16 0.0456 (10) 0.0513 (11) 0.0478 (10) 0.0069 (8) 0.0050 (8) −0.0013 (8)
C17 0.0543 (12) 0.0731 (14) 0.0611 (12) −0.0016 (10) 0.0079 (10) 0.0040 (10)
C18 0.0510 (13) 0.0902 (17) 0.0914 (17) −0.0034 (12) 0.0123 (12) 0.0068 (13)
C19 0.0468 (13) 0.0979 (18) 0.1005 (19) 0.0018 (12) −0.0048 (13) 0.0028 (15)
C20 0.0589 (14) 0.0993 (18) 0.0713 (15) 0.0133 (13) −0.0106 (12) 0.0074 (13)
C21 0.0527 (12) 0.0615 (12) 0.0536 (11) 0.0133 (10) 0.0008 (9) 0.0018 (9)
C22 0.0708 (14) 0.0796 (15) 0.0481 (11) 0.0173 (12) 0.0045 (10) 0.0127 (10)
C23 0.0627 (13) 0.0640 (12) 0.0561 (12) 0.0143 (10) 0.0099 (10) 0.0180 (10)
C24 0.0498 (11) 0.0527 (11) 0.0400 (9) 0.0053 (9) 0.0066 (8) −0.0004 (9)
C25 0.0488 (10) 0.0459 (10) 0.0430 (9) −0.0001 (8) 0.0089 (8) 0.0011 (8)
C26 0.0459 (10) 0.0463 (10) 0.0405 (9) −0.0012 (8) 0.0052 (8) −0.0021 (8)
C27 0.0477 (11) 0.0675 (13) 0.0513 (11) −0.0023 (9) 0.0087 (9) −0.0026 (9)
C28 0.0552 (12) 0.0857 (15) 0.0598 (13) −0.0180 (11) 0.0029 (10) −0.0020 (12)
C29 0.0770 (16) 0.0750 (15) 0.0571 (13) −0.0239 (12) −0.0010 (11) −0.0134 (11)
C30 0.0785 (15) 0.0562 (12) 0.0512 (11) −0.0020 (11) 0.0167 (10) −0.0078 (9)
N1 0.0532 (9) 0.0525 (9) 0.0414 (8) 0.0071 (7) 0.0042 (7) −0.0086 (7)
N2 0.0461 (9) 0.0538 (9) 0.0456 (8) 0.0082 (7) 0.0108 (7) 0.0080 (7)
O1 0.0700 (9) 0.0495 (8) 0.0520 (7) −0.0015 (6) 0.0165 (6) −0.0113 (6)
O2 0.0526 (8) 0.0939 (11) 0.0511 (8) −0.0098 (8) −0.0021 (6) 0.0017 (7)
O3 0.0563 (8) 0.0822 (10) 0.0511 (8) −0.0079 (7) −0.0049 (6) 0.0209 (7)
O4 0.0502 (8) 0.0683 (9) 0.0553 (8) 0.0000 (6) 0.0053 (6) −0.0208 (7)

Geometric parameters (Å, °)

C1—C2 1.389 (2) C16—C21 1.391 (2)
C1—C6 1.396 (3) C16—C24 1.482 (2)
C1—C9 1.478 (3) C17—C18 1.378 (3)
C2—C3 1.378 (3) C17—H17 0.9300
C2—H2 0.9300 C18—C19 1.371 (3)
C3—C4 1.371 (3) C18—H18 0.9300
C3—H3 0.9300 C19—C20 1.373 (3)
C4—C5 1.380 (3) C19—H19 0.9300
C4—H4 0.9300 C20—C21 1.390 (3)
C5—C6 1.386 (3) C20—H20 0.9300
C5—H5 0.9300 C21—C22 1.498 (3)
C6—C7 1.493 (3) C22—C23 1.498 (3)
C7—C8 1.505 (3) C22—H22A 0.9700
C7—H7A 0.9700 C22—H22B 0.9700
C7—H7B 0.9700 C23—N2 1.470 (2)
C8—N1 1.477 (2) C23—H23A 0.9700
C8—H8A 0.9700 C23—H23B 0.9700
C8—H8B 0.9700 C24—O3 1.240 (2)
C9—O1 1.243 (2) C24—N2 1.338 (2)
C9—N1 1.346 (2) C25—C30 1.384 (3)
C10—C15 1.385 (3) C25—C26 1.389 (2)
C10—C11 1.390 (2) C25—N2 1.436 (2)
C10—N1 1.430 (2) C26—O4 1.353 (2)
C11—O2 1.349 (2) C26—C27 1.384 (2)
C11—C12 1.381 (3) C27—C28 1.368 (3)
C12—C13 1.370 (3) C27—H27 0.9300
C12—H12 0.9300 C28—C29 1.370 (3)
C13—C14 1.381 (3) C28—H28 0.9300
C13—H13 0.9300 C29—C30 1.380 (3)
C14—C15 1.373 (3) C29—H29 0.9300
C14—H14 0.9300 C30—H30 0.9300
C15—H15 0.9300 O2—H2A 0.8200
C16—C17 1.387 (3) O4—H4A 0.8200
C2—C1—C6 119.70 (18) C18—C17—H17 119.8
C2—C1—C9 119.77 (17) C16—C17—H17 119.8
C6—C1—C9 120.51 (16) C19—C18—C17 119.6 (2)
C3—C2—C1 120.46 (19) C19—C18—H18 120.2
C3—C2—H2 119.8 C17—C18—H18 120.2
C1—C2—H2 119.8 C18—C19—C20 120.3 (2)
C4—C3—C2 119.9 (2) C18—C19—H19 119.9
C4—C3—H3 120.0 C20—C19—H19 119.9
C2—C3—H3 120.0 C19—C20—C21 121.3 (2)
C3—C4—C5 120.2 (2) C19—C20—H20 119.3
C3—C4—H4 119.9 C21—C20—H20 119.3
C5—C4—H4 119.9 C20—C21—C16 118.1 (2)
C4—C5—C6 120.8 (2) C20—C21—C22 123.15 (19)
C4—C5—H5 119.6 C16—C21—C22 118.74 (17)
C6—C5—H5 119.6 C21—C22—C23 111.20 (16)
C5—C6—C1 118.84 (18) C21—C22—H22A 109.4
C5—C6—C7 123.63 (18) C23—C22—H22A 109.4
C1—C6—C7 117.53 (17) C21—C22—H22B 109.4
C6—C7—C8 109.78 (16) C23—C22—H22B 109.4
C6—C7—H7A 109.7 H22A—C22—H22B 108.0
C8—C7—H7A 109.7 N2—C23—C22 111.26 (17)
C6—C7—H7B 109.7 N2—C23—H23A 109.4
C8—C7—H7B 109.7 C22—C23—H23A 109.4
H7A—C7—H7B 108.2 N2—C23—H23B 109.4
N1—C8—C7 110.58 (15) C22—C23—H23B 109.4
N1—C8—H8A 109.5 H23A—C23—H23B 108.0
C7—C8—H8A 109.5 O3—C24—N2 122.85 (16)
N1—C8—H8B 109.5 O3—C24—C16 119.94 (17)
C7—C8—H8B 109.5 N2—C24—C16 117.19 (15)
H8A—C8—H8B 108.1 C30—C25—C26 119.71 (17)
O1—C9—N1 121.35 (17) C30—C25—N2 122.20 (16)
O1—C9—C1 121.52 (16) C26—C25—N2 118.09 (15)
N1—C9—C1 117.13 (16) O4—C26—C27 122.76 (16)
C15—C10—C11 119.36 (18) O4—C26—C25 117.63 (15)
C15—C10—N1 121.76 (17) C27—C26—C25 119.61 (16)
C11—C10—N1 118.88 (16) C28—C27—C26 120.02 (19)
O2—C11—C12 123.50 (17) C28—C27—H27 120.0
O2—C11—C10 116.48 (16) C26—C27—H27 120.0
C12—C11—C10 120.02 (18) C27—C28—C29 120.8 (2)
C13—C12—C11 120.0 (2) C27—C28—H28 119.6
C13—C12—H12 120.0 C29—C28—H28 119.6
C11—C12—H12 120.0 C28—C29—C30 119.91 (19)
C12—C13—C14 120.3 (2) C28—C29—H29 120.0
C12—C13—H13 119.9 C30—C29—H29 120.0
C14—C13—H13 119.9 C29—C30—C25 119.97 (19)
C15—C14—C13 120.0 (2) C29—C30—H30 120.0
C15—C14—H14 120.0 C25—C30—H30 120.0
C13—C14—H14 120.0 C9—N1—C10 120.94 (15)
C14—C15—C10 120.2 (2) C9—N1—C8 120.81 (16)
C14—C15—H15 119.9 C10—N1—C8 118.25 (14)
C10—C15—H15 119.9 C24—N2—C25 120.89 (14)
C17—C16—C21 120.20 (17) C24—N2—C23 121.64 (15)
C17—C16—C24 119.35 (16) C25—N2—C23 117.47 (14)
C21—C16—C24 120.32 (17) C11—O2—H2A 109.5
C18—C17—C16 120.5 (2) C26—O4—H4A 109.5
C6—C1—C2—C3 −1.3 (3) C24—C16—C21—C22 5.1 (3)
C9—C1—C2—C3 −179.55 (17) C20—C21—C22—C23 −152.4 (2)
C1—C2—C3—C4 1.0 (3) C16—C21—C22—C23 28.7 (3)
C2—C3—C4—C5 0.5 (3) C21—C22—C23—N2 −49.3 (2)
C3—C4—C5—C6 −1.6 (3) C17—C16—C24—O3 −15.6 (3)
C4—C5—C6—C1 1.3 (3) C21—C16—C24—O3 160.19 (18)
C4—C5—C6—C7 −179.17 (19) C17—C16—C24—N2 166.28 (17)
C2—C1—C6—C5 0.2 (3) C21—C16—C24—N2 −17.9 (3)
C9—C1—C6—C5 178.40 (16) C30—C25—C26—O4 179.36 (16)
C2—C1—C6—C7 −179.41 (17) N2—C25—C26—O4 0.2 (2)
C9—C1—C6—C7 −1.2 (2) C30—C25—C26—C27 −0.4 (3)
C5—C6—C7—C8 144.45 (18) N2—C25—C26—C27 −179.54 (16)
C1—C6—C7—C8 −36.0 (2) O4—C26—C27—C28 179.99 (17)
C6—C7—C8—N1 54.5 (2) C25—C26—C27—C28 −0.3 (3)
C2—C1—C9—O1 18.7 (2) C26—C27—C28—C29 0.5 (3)
C6—C1—C9—O1 −159.50 (17) C27—C28—C29—C30 0.0 (3)
C2—C1—C9—N1 −161.35 (16) C28—C29—C30—C25 −0.6 (3)
C6—C1—C9—N1 20.4 (2) C26—C25—C30—C29 0.8 (3)
C15—C10—C11—O2 178.12 (17) N2—C25—C30—C29 179.95 (18)
N1—C10—C11—O2 −2.1 (2) O1—C9—N1—C10 2.0 (2)
C15—C10—C11—C12 −1.0 (3) C1—C9—N1—C10 −177.93 (15)
N1—C10—C11—C12 178.74 (16) O1—C9—N1—C8 −178.89 (16)
O2—C11—C12—C13 −178.00 (19) C1—C9—N1—C8 1.2 (2)
C10—C11—C12—C13 1.0 (3) C15—C10—N1—C9 −64.9 (2)
C11—C12—C13—C14 −0.1 (3) C11—C10—N1—C9 115.33 (18)
C12—C13—C14—C15 −0.8 (3) C15—C10—N1—C8 115.91 (19)
C13—C14—C15—C10 0.9 (3) C11—C10—N1—C8 −63.8 (2)
C11—C10—C15—C14 0.0 (3) C7—C8—N1—C9 −38.9 (2)
N1—C10—C15—C14 −179.70 (18) C7—C8—N1—C10 140.29 (16)
C21—C16—C17—C18 −1.0 (3) O3—C24—N2—C25 −4.9 (3)
C24—C16—C17—C18 174.73 (19) C16—C24—N2—C25 173.20 (15)
C16—C17—C18—C19 −0.5 (3) O3—C24—N2—C23 175.84 (17)
C17—C18—C19—C20 1.2 (4) C16—C24—N2—C23 −6.1 (2)
C18—C19—C20—C21 −0.3 (4) C30—C25—N2—C24 82.4 (2)
C19—C20—C21—C16 −1.3 (3) C26—C25—N2—C24 −98.5 (2)
C19—C20—C21—C22 179.8 (2) C30—C25—N2—C23 −98.3 (2)
C17—C16—C21—C20 1.9 (3) C26—C25—N2—C23 80.9 (2)
C24—C16—C21—C20 −173.83 (18) C22—C23—N2—C24 40.1 (2)
C17—C16—C21—C22 −179.16 (18) C22—C23—N2—C25 −139.19 (17)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O2—H2A···O3i 0.82 1.84 2.6388 (18) 166
O4—H4A···O1 0.82 1.85 2.6668 (17) 175
C7—H7B···Cg2ii 0.97 2.92 3.770 (2) 147
C19—H19···Cg2iii 0.93 2.78 3.518 (3) 137
C23—H23A···Cg3iv 0.97 2.87 3.771 (2) 155

Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x+3/2, −y+5/2, −z+2; (iii) x+1/2, y−1/2, z; (iv) −x+3/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2770).

References

  1. Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362. [DOI] [PubMed]
  2. Adhami, V. M., Aziz, M. H., Reagen-Shaw, S. R., Nihal, M., Mukhtar, H. & Ahmad, N. (2004). Mol. Cancer Ther. 3, 933–940. [PubMed]
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578. [DOI] [PubMed]
  5. Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213. [DOI] [PubMed]
  6. Shaw, K. R. & Zhang, M. B. (2008). US Patent WO2008016596.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920. [DOI] [PubMed]
  10. Vrba, J., Dolězel, P., Vičar, J. & Ulríchová, J. (2009). Toxicol. In Vitro, 23, 580–588. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103710X/is2770sup1.cif

e-67-o2721-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103710X/is2770Isup2.hkl

e-67-o2721-Isup2.hkl (223.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103710X/is2770Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES