Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2723. doi: 10.1107/S1600536811036920

2-(1,3-Benzoxazol-2-yl)-1-phenyl­ethenyl benzoate

Mohammad Hassan Ghorbani a,*
PMCID: PMC3201545  PMID: 22065724

Abstract

In the title mol­ecule, C22H15NO3, the configuration about the ethyl­enic double bond is Z configuration and it is approximately coplanar with the adjacent phenyl ring and benzoxazole ring system as indicated by the C(H)=C(O)—Cphen­yl—Cphen­yl and Obenzoxazole—C—C(H)=C(O) torsion angles of 179.88 (15) and 5.7 (2)°, respectively. The dihedral angle between the essentially planar (r.m.s. deviation = 0.080 Å) 2-(1,3-benzoxazol-2-yl)-1-phenyl­ethenyl group and the benzoate phenyl ring is 61.51 (6)°. A short intra­molecular O⋯O non-bonded inter­action of 2.651 (2) Å is present.

Related literature

For background and synthetic details, see: Ciurdaru & Ciuciu (1979); Zhou & Pittman (2004). For related structures, see: Markham et al. (1999); Punte et al. (1990); Loghmani et al. (2007). For van der Waals radii, see: Bondi (1964).graphic file with name e-67-o2723-scheme1.jpg

Experimental

Crystal data

  • C22H15NO3

  • M r = 341.35

  • Monoclinic, Inline graphic

  • a = 10.0152 (11) Å

  • b = 13.1911 (15) Å

  • c = 13.4430 (15) Å

  • β = 110.957 (2)°

  • V = 1658.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.973, T max = 0.982

  • 10417 measured reflections

  • 3254 independent reflections

  • 2656 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.093

  • S = 1.08

  • 3254 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036920/lh5319sup1.cif

e-67-o2723-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036920/lh5319Isup2.hkl

e-67-o2723-Isup2.hkl (159.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036920/lh5319Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Islamic Azad University-Falavarjan Branch for financial support. He also wishes to thank Professor M. H. Habibi, University of Isfahan, and Dr M. Pourayoubi, Ferdowsi University of Mashhad, for their helpful assistance.

supplementary crystallographic information

Comment

The reaction of 2-methylbenzoxazole (A) (Fig. 1) with acyl chlorides such as benzoyl chloride was carried out for the first time by Ciurdaru and Ciuciu (1979), who used the same conditions for reactions of other 2-methylbenzoazoles with acyl chlorides. After infra red and mass spectral investigations and elemental analysis of acylated derivatives, it was suggested that the double acylated structure of (C) was the product of these reactions. This structure differs with the double acylated structure of (D) for the product of acylation of some azoles such as 2-methylthiazoles (Zhou & Pittman, 2004), although these reactions have been done under the same conditions. In fact, based on the presented data, not only the enolester (C) but also the conjugated ketone (D) can be considered as product of the reactions of 2-methylbenzoazoles with acyl chlorides. In addition to the molecular structure, the configuration of the ethylenic double bond in both probable structures was also questionable. In order to clarify these ambiguous situations, the crystal structure determination of the title compound was carried out.

The molecular structure of the title compound is shown in Fig. 2. The enolester structure is confirmed as product of the reaction and the ethylenic double bond (C8═C9) has a Z configuration. The ethylenic double bond is co-planar with the connected phenyl ring (the torsion angle of C8—C9—C10—C15 is 179.88 (15)°) and also is approximately co-planar with the planar benzoxazole rings (the torsion angles of O1—C7—C8—C9 and N—C7—C8—C9 are equal to 5.7 (2)° and -174.08 (15)°, respectively). On the other hand, the benzoyl moiety is stituated out of the plane of co-planar components (the torsion angles of C16—O2—C9—C8 and C16—O2—C9—C10 are -89.17 (16) and 95.31 (14), respectively).

The C8—C9 bond length (1.335 (2) Å) in the structure is within the normal range of an unconjugated ethylenic double bond. Also, due to the more resonance interaction of nonbonding electrons on the O2 with the π system of C=O relative to C=C, the O2—C16 bond length (1.3641 (17) Å) is shorter than O2—C9 (1.4010 (16) Å). These values may indicate that the π system of ethylenic double bond is not fully delocalized.

An intramolecular O1···O2 non-bonded distance (2.651 (2) Å) is shorter than the sum of the corresponding van der Waals radii (3.04 Å) (Bondi, 1964). This phenomenon is similar to the intramolecular non-bonded interactions between an oxygen atom and atoms of group VIA in the periodic table (S, Se and Te) (Markham et al., 1999) and shows that an attractive non-bonded interaction between O1 and O2 must be present in the molecule (Punte et al., 1990). This attraction may be responsible for the Z configuration becoming the preferred configuration for the ethylenic double bond (Loghmani et al., 2007).

Experimental

The title compound was prepared as in the literature (Ciurdaru & Ciuciu, 1979), except that benzoyl chloride and triethylamine (both 30 mmol) were used to complete the reaction. Suitable single crystals for X-ray analysis were obtained from an ethanol solution of the title compound at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H distances = 0.95 Å (both aryl and vinyl-H) and isotropic displacement parameters for these atoms were Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Reactions of 2-methylbenzoazoles with acyl chlorides (benzoyl chloride) in the presence Et3N under reflux conditions and probable products.

Fig. 2.

Fig. 2.

The molecular structure of the title compound, showing 50% probability displacement.

Crystal data

C22H15NO3 F(000) = 712
Mr = 341.35 Dx = 1.367 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6385 reflections
a = 10.0152 (11) Å θ = 2.2–28.2°
b = 13.1911 (15) Å µ = 0.09 mm1
c = 13.4430 (15) Å T = 150 K
β = 110.957 (2)° Block, colourless
V = 1658.5 (3) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer 3254 independent reflections
Radiation source: sealed tube 2656 reflections with I > 2σ(I)
graphite Rint = 0.021
thin–slice ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −12→12
Tmin = 0.973, Tmax = 0.982 k = −16→16
10417 measured reflections l = −14→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.034P)2 + 0.6798P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3254 reflections Δρmax = 0.21 e Å3
236 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.52934 (10) 0.29679 (7) 0.67880 (8) 0.0276 (2)
O2 0.67141 (10) 0.39020 (7) 0.57269 (8) 0.0242 (2)
O3 0.87424 (12) 0.36358 (9) 0.71372 (9) 0.0385 (3)
N 0.40724 (13) 0.39634 (9) 0.75280 (10) 0.0275 (3)
C1 0.44901 (15) 0.23434 (11) 0.71744 (11) 0.0256 (3)
C2 0.44378 (17) 0.12991 (11) 0.71550 (13) 0.0330 (4)
H2A 0.4990 0.0902 0.6855 0.040*
C3 0.35225 (17) 0.08696 (13) 0.76035 (14) 0.0386 (4)
H3A 0.3434 0.0153 0.7609 0.046*
C4 0.27291 (17) 0.14641 (14) 0.80472 (14) 0.0397 (4)
H4A 0.2107 0.1140 0.8341 0.048*
C5 0.28183 (16) 0.25104 (13) 0.80738 (13) 0.0353 (4)
H5A 0.2282 0.2910 0.8385 0.042*
C6 0.37305 (15) 0.29498 (11) 0.76227 (12) 0.0266 (3)
C7 0.49753 (15) 0.39237 (11) 0.70353 (12) 0.0260 (3)
C8 0.56266 (15) 0.47952 (11) 0.67458 (12) 0.0266 (3)
H8A 0.5435 0.5432 0.6997 0.032*
C9 0.64666 (14) 0.48137 (10) 0.61670 (11) 0.0239 (3)
C10 0.70965 (14) 0.57141 (11) 0.58589 (11) 0.0242 (3)
C11 0.68438 (15) 0.66894 (11) 0.61587 (12) 0.0274 (3)
H11A 0.6263 0.6778 0.6577 0.033*
C12 0.74315 (16) 0.75261 (11) 0.58514 (13) 0.0315 (4)
H12A 0.7244 0.8185 0.6055 0.038*
C13 0.82906 (16) 0.74112 (12) 0.52499 (13) 0.0331 (4)
H13A 0.8697 0.7988 0.5044 0.040*
C14 0.85531 (17) 0.64518 (12) 0.49504 (13) 0.0328 (4)
H14A 0.9143 0.6369 0.4538 0.039*
C15 0.79595 (16) 0.56091 (11) 0.52499 (12) 0.0288 (3)
H15A 0.8143 0.4953 0.5038 0.035*
C16 0.78482 (15) 0.33301 (11) 0.63327 (12) 0.0251 (3)
C17 0.78117 (15) 0.23113 (11) 0.58611 (11) 0.0246 (3)
C18 0.90826 (17) 0.17707 (12) 0.61258 (13) 0.0313 (3)
H18A 0.9954 0.2064 0.6581 0.038*
C19 0.90733 (19) 0.08035 (13) 0.57236 (14) 0.0392 (4)
H19A 0.9942 0.0435 0.5895 0.047*
C20 0.7804 (2) 0.03741 (12) 0.50741 (14) 0.0413 (4)
H20A 0.7801 −0.0292 0.4805 0.050*
C21 0.65337 (19) 0.09079 (12) 0.48128 (14) 0.0382 (4)
H21A 0.5663 0.0608 0.4365 0.046*
C22 0.65338 (16) 0.18795 (11) 0.52046 (12) 0.0292 (3)
H22A 0.5665 0.2249 0.5026 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0315 (5) 0.0228 (5) 0.0324 (6) −0.0026 (4) 0.0162 (5) −0.0022 (4)
O2 0.0245 (5) 0.0210 (5) 0.0272 (5) 0.0009 (4) 0.0092 (4) −0.0023 (4)
O3 0.0312 (6) 0.0364 (6) 0.0385 (7) 0.0019 (5) 0.0013 (5) −0.0067 (5)
N 0.0280 (6) 0.0262 (6) 0.0315 (7) −0.0010 (5) 0.0145 (6) −0.0030 (5)
C1 0.0240 (7) 0.0286 (8) 0.0224 (7) −0.0049 (6) 0.0061 (6) −0.0003 (6)
C2 0.0375 (8) 0.0263 (8) 0.0321 (8) −0.0049 (7) 0.0088 (7) −0.0029 (7)
C3 0.0376 (9) 0.0310 (8) 0.0394 (10) −0.0105 (7) 0.0041 (7) 0.0052 (7)
C4 0.0296 (8) 0.0492 (10) 0.0369 (9) −0.0125 (7) 0.0077 (7) 0.0110 (8)
C5 0.0283 (8) 0.0477 (10) 0.0320 (9) −0.0034 (7) 0.0131 (7) 0.0026 (7)
C6 0.0237 (7) 0.0299 (8) 0.0240 (7) −0.0015 (6) 0.0058 (6) −0.0005 (6)
C7 0.0266 (7) 0.0232 (7) 0.0280 (8) 0.0001 (6) 0.0096 (6) −0.0021 (6)
C8 0.0284 (7) 0.0206 (7) 0.0313 (8) −0.0004 (6) 0.0116 (6) −0.0031 (6)
C9 0.0231 (7) 0.0208 (7) 0.0256 (8) 0.0009 (5) 0.0059 (6) −0.0030 (6)
C10 0.0206 (6) 0.0247 (7) 0.0234 (7) −0.0003 (6) 0.0032 (6) 0.0003 (6)
C11 0.0255 (7) 0.0255 (7) 0.0297 (8) 0.0004 (6) 0.0082 (6) −0.0002 (6)
C12 0.0312 (8) 0.0220 (7) 0.0354 (9) −0.0007 (6) 0.0049 (7) 0.0018 (6)
C13 0.0303 (8) 0.0303 (8) 0.0344 (9) −0.0050 (6) 0.0062 (7) 0.0085 (7)
C14 0.0308 (8) 0.0372 (9) 0.0322 (9) −0.0013 (7) 0.0134 (7) 0.0039 (7)
C15 0.0301 (8) 0.0258 (7) 0.0303 (8) −0.0007 (6) 0.0107 (6) −0.0009 (6)
C16 0.0227 (7) 0.0265 (7) 0.0284 (8) 0.0000 (6) 0.0119 (6) 0.0018 (6)
C17 0.0286 (7) 0.0236 (7) 0.0256 (8) 0.0028 (6) 0.0147 (6) 0.0033 (6)
C18 0.0321 (8) 0.0341 (8) 0.0300 (8) 0.0080 (7) 0.0139 (7) 0.0062 (7)
C19 0.0500 (10) 0.0355 (9) 0.0383 (10) 0.0206 (8) 0.0236 (8) 0.0109 (8)
C20 0.0667 (12) 0.0214 (7) 0.0448 (10) 0.0061 (8) 0.0312 (9) 0.0011 (7)
C21 0.0468 (10) 0.0288 (8) 0.0433 (10) −0.0056 (7) 0.0215 (8) −0.0072 (7)
C22 0.0313 (8) 0.0251 (7) 0.0346 (9) 0.0002 (6) 0.0159 (7) −0.0021 (6)

Geometric parameters (Å, °)

O1—C1 1.3764 (17) C10—C15 1.394 (2)
O1—C7 1.3703 (17) C11—H11A 0.9500
O2—C9 1.4010 (16) C11—C12 1.382 (2)
O2—C16 1.3641 (17) C12—H12A 0.9500
O3—C16 1.2006 (18) C12—C13 1.384 (2)
N—C6 1.3973 (19) C13—H13A 0.9500
N—C7 1.2990 (18) C13—C14 1.381 (2)
C1—C2 1.378 (2) C14—H14A 0.9500
C1—C6 1.382 (2) C14—C15 1.387 (2)
C2—H2A 0.9500 C15—H15A 0.9500
C2—C3 1.386 (2) C16—C17 1.481 (2)
C3—H3A 0.9500 C17—C18 1.390 (2)
C3—C4 1.393 (3) C17—C22 1.390 (2)
C4—H4A 0.9500 C18—H18A 0.9500
C4—C5 1.383 (2) C18—C19 1.384 (2)
C5—H5A 0.9500 C19—H19A 0.9500
C5—C6 1.391 (2) C19—C20 1.380 (3)
C7—C8 1.442 (2) C20—H20A 0.9500
C8—H8A 0.9500 C20—C21 1.385 (2)
C8—C9 1.335 (2) C21—H21A 0.9500
C9—C10 1.472 (2) C21—C22 1.386 (2)
C10—C11 1.398 (2) C22—H22A 0.9500
C1—O1—C7 103.96 (11) H11A—C11—C12 119.7
C9—O2—C16 117.25 (11) C11—C12—H12A 119.7
C6—N—C7 104.24 (12) C11—C12—C13 120.51 (14)
O1—C1—C2 127.91 (14) H12A—C12—C13 119.7
O1—C1—C6 107.78 (12) C12—C13—H13A 120.2
C2—C1—C6 124.30 (14) C12—C13—C14 119.58 (14)
C1—C2—H2A 122.4 H13A—C13—C14 120.2
C1—C2—C3 115.27 (15) C13—C14—H14A 119.9
H2A—C2—C3 122.4 C13—C14—C15 120.25 (15)
C2—C3—H3A 119.2 H14A—C14—C15 119.9
C2—C3—C4 121.57 (15) C10—C15—C14 120.75 (14)
H3A—C3—C4 119.2 C10—C15—H15A 119.6
C3—C4—H4A 118.9 C14—C15—H15A 119.6
C3—C4—C5 122.10 (15) O2—C16—O3 123.06 (13)
H4A—C4—C5 118.9 O2—C16—C17 111.01 (12)
C4—C5—H5A 121.6 O3—C16—C17 125.93 (13)
C4—C5—C6 116.82 (15) C16—C17—C18 118.42 (14)
H5A—C5—C6 121.6 C16—C17—C22 121.31 (13)
N—C6—C1 108.85 (12) C18—C17—C22 120.21 (14)
N—C6—C5 131.23 (14) C17—C18—H18A 120.2
C1—C6—C5 119.92 (14) C17—C18—C19 119.68 (16)
O1—C7—N 115.18 (12) H18A—C18—C19 120.2
O1—C7—C8 120.07 (12) C18—C19—H19A 120.0
N—C7—C8 124.75 (13) C18—C19—C20 120.08 (15)
C7—C8—H8A 116.1 H19A—C19—C20 120.0
C7—C8—C9 127.73 (14) C19—C20—H20A 119.8
H8A—C8—C9 116.1 C19—C20—C21 120.43 (15)
O2—C9—C8 118.30 (12) H20A—C20—C21 119.8
O2—C9—C10 114.55 (12) C20—C21—H21A 120.0
C8—C9—C10 126.98 (13) C20—C21—C22 119.92 (16)
C9—C10—C11 121.43 (13) H21A—C21—C22 120.0
C9—C10—C15 120.22 (13) C17—C22—C21 119.67 (14)
C11—C10—C15 118.35 (13) C17—C22—H22A 120.2
C10—C11—H11A 119.7 C21—C22—H22A 120.2
C10—C11—C12 120.57 (14)
C7—O1—C1—C2 −178.43 (15) O2—C9—C10—C15 −5.06 (19)
C7—O1—C1—C6 0.41 (15) C8—C9—C10—C11 −0.5 (2)
O1—C1—C2—C3 −179.83 (14) C8—C9—C10—C15 179.88 (15)
C6—C1—C2—C3 1.5 (2) C9—C10—C11—C12 −179.26 (13)
C1—C2—C3—C4 −0.5 (2) C15—C10—C11—C12 0.4 (2)
C2—C3—C4—C5 −0.6 (3) C10—C11—C12—C13 −0.6 (2)
C3—C4—C5—C6 0.7 (2) C11—C12—C13—C14 0.4 (2)
O1—C1—C6—N −0.68 (16) C12—C13—C14—C15 0.0 (2)
O1—C1—C6—C5 179.74 (13) C13—C14—C15—C10 −0.3 (2)
C2—C1—C6—N 178.21 (14) C9—C10—C15—C14 179.68 (14)
C2—C1—C6—C5 −1.4 (2) C11—C10—C15—C14 0.1 (2)
C4—C5—C6—N −179.30 (15) C9—O2—C16—O3 −11.2 (2)
C4—C5—C6—C1 0.2 (2) C9—O2—C16—C17 169.02 (11)
C7—N—C6—C1 0.66 (16) O2—C16—C17—C18 157.19 (13)
C7—N—C6—C5 −179.81 (16) O2—C16—C17—C22 −25.54 (18)
C6—N—C7—O1 −0.42 (17) O3—C16—C17—C18 −22.6 (2)
C6—N—C7—C8 179.39 (14) O3—C16—C17—C22 154.63 (15)
C1—O1—C7—N 0.01 (16) C16—C17—C18—C19 177.96 (14)
C1—O1—C7—C8 −179.80 (13) C22—C17—C18—C19 0.7 (2)
O1—C7—C8—C9 5.7 (2) C17—C18—C19—C20 −0.8 (2)
N—C7—C8—C9 −174.08 (15) C18—C19—C20—C21 0.5 (3)
C7—C8—C9—O2 3.6 (2) C19—C20—C21—C22 0.0 (3)
C7—C8—C9—C10 178.51 (14) C20—C21—C22—C17 −0.2 (2)
C16—O2—C9—C8 −89.17 (16) C16—C17—C22—C21 −177.38 (14)
C16—O2—C9—C10 95.31 (14) C18—C17—C22—C21 −0.2 (2)
O2—C9—C10—C11 174.55 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5319).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ciurdaru, G. & Ciuciu, M. (1979). J. Prakt. Chem. 321, 320–322.
  4. Loghmani, K.-H., Sadeghi, M. M., Habibi, M. H., Harrington, R. W., Clegg, W. & Ghorbani, M. H. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x41–x42.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Markham, G. D., Bock, C. L., Trachtman, M. & Bock, C. W. (1999). J. Mol. Struct. (THEOCHEM), 459, 187–199.
  7. Punte, G., Rivero, B. E., Cerdeira, S. & Nudelman, N. S. (1990). Can. J. Chem. 68, 298–301.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zhou, A. & Pittman, C. U. Jr (2004). Tetrahedron Lett. 45, 8899–8903.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036920/lh5319sup1.cif

e-67-o2723-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036920/lh5319Isup2.hkl

e-67-o2723-Isup2.hkl (159.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036920/lh5319Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES