Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2581. doi: 10.1107/S1600536811035677

4,4′-Dichloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol

Augusto Rivera a,*, John Sadat-Bernal a, Jaime Ríos-Motta a, Michaela Pojarová b, Michal Dušek b
PMCID: PMC3201546  PMID: 22065817

Abstract

The imidazolidine ring in the title compound, C17H18Cl2N2O2, adopts a twist conformation. The observed conformation is stabilized by two intra­molecular O—H⋯N hydrogen bonds, with both N atoms acting as hydrogen-bond acceptors. The phenyl substituents are aligned at 70.0 (1) and 76.6 (1)° with respect to the best plane through the five atoms of the imidazolidine ring. Weak inter­molecular C—H⋯O inter­actions stabilize the crystal packing.

Related literature

For the preparation of the title compound, see: Rivera et al. (1993). For synthetic applications of these di-Mannich bases, see: Rivera & Quevedo (2004); Rivera et al. (2004). For a closely related structure, see: Rivera et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For applications of tetra­hydro­salens and heterocalixarenes in medicine and metal-complex catalysis, see: Balsells & Walsh (2000); Weber et al. (1996).graphic file with name e-67-o2581-scheme1.jpg

Experimental

Crystal data

  • C17H18Cl2N2O2

  • M r = 353.23

  • Monoclinic, Inline graphic

  • a = 10.8640 (2) Å

  • b = 9.6125 (2) Å

  • c = 16.7242 (4) Å

  • β = 106.608 (2)°

  • V = 1673.65 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.58 mm−1

  • T = 120 K

  • 0.42 × 0.37 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.669, T max = 0.777

  • 19547 measured reflections

  • 2994 independent reflections

  • 2772 reflections with I > 2σ(I)’

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.101

  • S = 1.04

  • 2994 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035677/bt5631sup1.cif

e-67-o2581-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035677/bt5631Isup2.hkl

e-67-o2581-Isup2.hkl (147KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035677/bt5631Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.97 1.77 2.6524 (17) 149
O2—H1O2⋯N2 0.96 1.77 2.6515 (17) 150
C4—H4B⋯O2i 0.97 2.52 3.466 (2) 163
C9—H9⋯O2ii 0.93 2.47 3.395 (2) 172
C11—H11B⋯O1iii 0.97 2.58 3.482 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic. JSB acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

supplementary crystallographic information

Comment

In connection with our synthetic studies on heterocyclic compounds we earlier synthesized a series of di-Mannich bases named 2,2'-(imidazolidine-1,3-diyldimethanediyl)bis(4-substitutedphenol) by reaction of appropriate phenols with 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (Rivera et al., 1993). They are promising synthetic intermediates for the synthesis of tetrahydrosalens (Rivera, Quevedo, Navarro & Maldonado, 2004) and heterocalixarenes (Rivera & Quevedo, 2004), which find wide use in both medicine and metal-complex catalysis (Balsells & Walsh, 2000; Weber et al. 1996). These Mannich bases are convenient models for studying the nature of hydrogen bonding and weak noncovalent interactions, which play a key role in biological processes and design of complex structures.

We report here the structure of the title compound (I) (Fig. 1), which was prepared according to the previously reported procedure (Rivera et al., 1993) but using the intriguing aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane. Recrystallization from methanol by slow evaporation over a period of one week affording crystals suitable for X-ray analysis.

The asymmetric unit of (I), Fig 1, contains one independent 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-chlorophenol) molecule. Distances and angles are similar to those observed before in the closely related structure 4,4'-dichloro-2,2'-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol (Rivera et al., 2010). The imidazolidine ring is in a twist conformation on C1–N2 with Q(2) 0.402 (2) Å and φ 52.7 (2)° (Cremer & Pople, 1975). Its central ring makes an angle of 70.0 (1)° and 76.6 (1)° with the planar phenyl rings (C5—C10) and (C12—C17) respectively. The crystal structure has two intramolecular hydrogen bonds and three C—H···O intermolecular hydrogen bonds (Table 1). The unit cell contains four molecules of the title compound (I), which form pairs of hydrogen bonded dimers (Table 1, Figs. 2). Neighboring pairs of these dimers are orthogonally arranged with respect to each other. Lattice binding is provided principally by C—H···O interactions, shown in Figure 2. The chains, aligned along the c axis, are further linked together via cross-linking weaker C—H···O interactions (Table 1).

Experimental

For the originally reported synthesis, see: Rivera et al. (1993)

Refinement

All H atoms could be located in a difference Fourier synthesis. Nevertheless, H atoms were refined as riding with H bonded to O at the positions where they were found and C–H distances of 0.93 Å for aromatic H and C–H = 0.97Å for methylene groups. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(O) for hydroxyl groups and to 1.2Ueq(C) for the CH– and CH2– groups.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules of the title compound view along b axis.

Crystal data

C17H18Cl2N2O2 F(000) = 736
Mr = 353.23 Dx = 1.402 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 9456 reflections
a = 10.8640 (2) Å θ = 4.2–67.1°
b = 9.6125 (2) Å µ = 3.58 mm1
c = 16.7242 (4) Å T = 120 K
β = 106.608 (2)° Prism, colourless
V = 1673.65 (6) Å3 0.42 × 0.37 × 0.25 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer 2994 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2772 reflections with I > 2σ(I)'
mirror Rint = 0.040
Detector resolution: 10.3784 pixels mm-1 θmax = 67.2°, θmin = 4.4°
Rotation method data acquisition using ω scans h = −12→12
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) k = −11→11
Tmin = 0.669, Tmax = 0.777 l = −19→17
19547 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.5161P] where P = (Fo2 + 2Fc2)/3
2994 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.21837 (14) 0.21659 (16) 0.42784 (10) 0.0322 (3)
H1A 0.1749 0.1280 0.4260 0.039*
H1B 0.1608 0.2905 0.4337 0.039*
C2 0.36940 (16) 0.33596 (16) 0.38001 (10) 0.0368 (4)
H2A 0.3437 0.4280 0.3576 0.044*
H2B 0.4409 0.3050 0.3607 0.044*
C3 0.40707 (16) 0.33848 (17) 0.47479 (10) 0.0372 (4)
H3A 0.4991 0.3275 0.4981 0.045*
H3B 0.3809 0.4250 0.4949 0.045*
C4 0.29989 (15) 0.10433 (15) 0.32188 (10) 0.0320 (3)
H4A 0.2325 0.0354 0.3154 0.038*
H4B 0.3766 0.0692 0.3621 0.038*
C5 0.32658 (14) 0.12712 (15) 0.23931 (9) 0.0303 (3)
C6 0.42918 (14) 0.06128 (15) 0.22089 (9) 0.0312 (3)
H6 0.4843 0.0051 0.2607 0.037*
C7 0.44951 (15) 0.07915 (16) 0.14360 (10) 0.0326 (3)
C8 0.37107 (16) 0.16444 (16) 0.08356 (10) 0.0354 (4)
H8 0.3864 0.1763 0.0320 0.043*
C9 0.26963 (16) 0.23171 (16) 0.10149 (10) 0.0351 (4)
H9 0.2168 0.2901 0.0619 0.042*
C10 0.24590 (14) 0.21281 (15) 0.17805 (10) 0.0316 (3)
C11 0.31970 (15) 0.23442 (16) 0.58004 (10) 0.0330 (3)
H11A 0.2605 0.3103 0.5793 0.040*
H11B 0.4013 0.2578 0.6198 0.040*
C12 0.26818 (14) 0.10368 (16) 0.60816 (9) 0.0299 (3)
C13 0.18268 (15) 0.11162 (16) 0.65594 (9) 0.0328 (3)
H13 0.1516 0.1976 0.6667 0.039*
C14 0.14386 (17) −0.00807 (17) 0.68735 (11) 0.0358 (4)
C15 0.18658 (17) −0.13748 (17) 0.67129 (10) 0.0387 (4)
H15 0.1597 −0.2173 0.6929 0.046*
C16 0.26995 (16) −0.14685 (17) 0.62260 (10) 0.0361 (4)
H16 0.2985 −0.2336 0.6109 0.043*
C17 0.31142 (15) −0.02753 (16) 0.59103 (10) 0.0311 (3)
N1 0.25961 (12) 0.23659 (13) 0.35315 (8) 0.0322 (3)
N2 0.33788 (12) 0.21975 (13) 0.49679 (8) 0.0300 (3)
O1 0.14312 (10) 0.27831 (11) 0.19253 (7) 0.0364 (3)
H1O1 0.1592 0.2802 0.2528 0.044*
O2 0.39647 (10) −0.04067 (12) 0.54511 (7) 0.0348 (3)
H1O2 0.4004 0.0494 0.5208 0.042*
Cl1 0.57874 (4) −0.00643 (4) 0.12223 (3) 0.03906 (15)
Cl2 0.04238 (5) 0.00586 (5) 0.75129 (3) 0.04919 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0287 (7) 0.0310 (8) 0.0365 (8) 0.0010 (6) 0.0086 (6) 0.0027 (6)
C2 0.0402 (9) 0.0281 (8) 0.0418 (9) −0.0043 (6) 0.0116 (7) 0.0039 (6)
C3 0.0384 (8) 0.0313 (8) 0.0417 (9) −0.0080 (6) 0.0111 (7) −0.0005 (6)
C4 0.0335 (8) 0.0265 (7) 0.0346 (8) 0.0011 (6) 0.0073 (6) 0.0047 (6)
C5 0.0323 (7) 0.0237 (7) 0.0317 (8) −0.0034 (6) 0.0039 (6) 0.0025 (6)
C6 0.0316 (7) 0.0245 (7) 0.0332 (8) −0.0015 (6) 0.0025 (6) 0.0014 (6)
C7 0.0343 (8) 0.0257 (7) 0.0368 (8) −0.0026 (6) 0.0083 (6) −0.0026 (6)
C8 0.0437 (9) 0.0294 (8) 0.0321 (8) −0.0033 (6) 0.0090 (7) 0.0008 (6)
C9 0.0404 (9) 0.0273 (8) 0.0328 (8) 0.0009 (6) 0.0025 (7) 0.0046 (6)
C10 0.0312 (7) 0.0240 (7) 0.0360 (8) −0.0020 (6) 0.0043 (6) 0.0008 (6)
C11 0.0367 (8) 0.0263 (7) 0.0355 (8) −0.0008 (6) 0.0094 (7) −0.0034 (6)
C12 0.0289 (7) 0.0286 (8) 0.0290 (7) 0.0006 (6) 0.0029 (6) −0.0009 (6)
C13 0.0337 (8) 0.0322 (8) 0.0301 (8) 0.0025 (6) 0.0052 (6) 0.0002 (6)
C14 0.0339 (8) 0.0402 (9) 0.0307 (8) −0.0035 (6) 0.0053 (7) 0.0011 (6)
C15 0.0442 (9) 0.0320 (8) 0.0350 (8) −0.0078 (7) 0.0036 (7) 0.0040 (7)
C16 0.0415 (9) 0.0266 (7) 0.0351 (8) 0.0008 (6) 0.0026 (7) −0.0015 (6)
C17 0.0299 (7) 0.0296 (7) 0.0291 (8) 0.0007 (6) 0.0008 (6) −0.0018 (6)
N1 0.0327 (6) 0.0264 (6) 0.0368 (7) 0.0001 (5) 0.0089 (6) 0.0035 (5)
N2 0.0286 (6) 0.0279 (6) 0.0330 (7) −0.0015 (5) 0.0081 (5) −0.0007 (5)
O1 0.0341 (6) 0.0341 (6) 0.0385 (6) 0.0057 (4) 0.0063 (5) 0.0060 (5)
O2 0.0353 (6) 0.0299 (5) 0.0395 (6) 0.0045 (4) 0.0109 (5) −0.0021 (5)
Cl1 0.0404 (3) 0.0345 (2) 0.0437 (3) 0.00186 (14) 0.01431 (19) −0.00169 (15)
Cl2 0.0477 (3) 0.0585 (3) 0.0470 (3) −0.00269 (18) 0.0226 (2) 0.00619 (18)

Geometric parameters (Å, °)

C1—N1 1.455 (2) C8—H8 0.9300
C1—N2 1.470 (2) C9—C10 1.388 (2)
C1—H1A 0.9700 C9—H9 0.9300
C1—H1B 0.9700 C10—O1 1.3625 (19)
C2—N1 1.494 (2) C11—N2 1.468 (2)
C2—C3 1.520 (2) C11—C12 1.505 (2)
C2—H2A 0.9700 C11—H11A 0.9700
C2—H2B 0.9700 C11—H11B 0.9700
C3—N2 1.470 (2) C12—C13 1.390 (2)
C3—H3A 0.9700 C12—C17 1.404 (2)
C3—H3B 0.9700 C13—C14 1.380 (2)
C4—N1 1.4873 (19) C13—H13 0.9300
C4—C5 1.506 (2) C14—C15 1.381 (2)
C4—H4A 0.9700 C14—Cl2 1.7466 (18)
C4—H4B 0.9700 C15—C16 1.383 (3)
C5—C6 1.391 (2) C15—H15 0.9300
C5—C10 1.408 (2) C16—C17 1.390 (2)
C6—C7 1.383 (2) C16—H16 0.9300
C6—H6 0.9300 C17—O2 1.366 (2)
C7—C8 1.385 (2) O1—H1O1 0.9725
C7—Cl1 1.7500 (16) O2—H1O2 0.9623
C8—C9 1.383 (2)
N1—C1—N2 104.54 (12) C8—C9—H9 119.7
N1—C1—H1A 110.8 C10—C9—H9 119.7
N2—C1—H1A 110.8 O1—C10—C9 118.76 (14)
N1—C1—H1B 110.8 O1—C10—C5 120.82 (14)
N2—C1—H1B 110.8 C9—C10—C5 120.42 (14)
H1A—C1—H1B 108.9 N2—C11—C12 112.28 (12)
N1—C2—C3 106.13 (12) N2—C11—H11A 109.1
N1—C2—H2A 110.5 C12—C11—H11A 109.1
C3—C2—H2A 110.5 N2—C11—H11B 109.1
N1—C2—H2B 110.5 C12—C11—H11B 109.1
C3—C2—H2B 110.5 H11A—C11—H11B 107.9
H2A—C2—H2B 108.7 C13—C12—C17 118.97 (14)
N2—C3—C2 104.13 (12) C13—C12—C11 120.21 (14)
N2—C3—H3A 110.9 C17—C12—C11 120.70 (14)
C2—C3—H3A 110.9 C14—C13—C12 120.02 (15)
N2—C3—H3B 110.9 C14—C13—H13 120.0
C2—C3—H3B 110.9 C12—C13—H13 120.0
H3A—C3—H3B 108.9 C13—C14—C15 121.39 (16)
N1—C4—C5 110.56 (12) C13—C14—Cl2 118.96 (13)
N1—C4—H4A 109.5 C15—C14—Cl2 119.62 (13)
C5—C4—H4A 109.5 C14—C15—C16 119.09 (15)
N1—C4—H4B 109.5 C14—C15—H15 120.5
C5—C4—H4B 109.5 C16—C15—H15 120.5
H4A—C4—H4B 108.1 C15—C16—C17 120.51 (15)
C6—C5—C10 118.47 (14) C15—C16—H16 119.7
C6—C5—C4 120.89 (13) C17—C16—H16 119.7
C10—C5—C4 120.61 (14) O2—C17—C16 118.82 (14)
C7—C6—C5 120.18 (14) O2—C17—C12 121.17 (14)
C7—C6—H6 119.9 C16—C17—C12 120.00 (15)
C5—C6—H6 119.9 C1—N1—C4 112.49 (12)
C6—C7—C8 121.45 (14) C1—N1—C2 103.98 (12)
C6—C7—Cl1 118.97 (12) C4—N1—C2 111.25 (12)
C8—C7—Cl1 119.57 (12) C11—N2—C1 114.70 (12)
C9—C8—C7 118.89 (15) C11—N2—C3 112.33 (12)
C9—C8—H8 120.6 C1—N2—C3 102.70 (12)
C7—C8—H8 120.6 C10—O1—H1O1 106.2
C8—C9—C10 120.56 (14) C17—O2—H1O2 105.8
?—?—?—? ?

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.97 1.77 2.6524 (17) 149
O2—H1O2···N2 0.96 1.77 2.6515 (17) 150
C4—H4B···O2i 0.97 2.52 3.466 (2) 163
C9—H9···O2ii 0.93 2.47 3.395 (2) 172
C11—H11B···O1iii 0.97 2.58 3.482 (2) 154

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5631).

References

  1. Balsells, J. & Walsh, P. J. (2000). J. Am. Chem. Soc. 122, 1802–1803.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.
  5. Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.
  6. Rivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335–8338.
  7. Rivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479–2485.
  8. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Weber, E., Trepte, J., Piel, M., Czugler, M., Kravtsov, V. Ch., Somonov, Y. A., Lipkowski, J. & Ganin, E. V. (1996). J. Chem. Soc. Perkin Trans 2, pp. 2359–2366.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035677/bt5631sup1.cif

e-67-o2581-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035677/bt5631Isup2.hkl

e-67-o2581-Isup2.hkl (147KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035677/bt5631Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES