Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):m1394. doi: 10.1107/S1600536811036853

Bis(3-benzoyl-1,1-di-sec-butyl­thio­ureato-κ2 O,S)palladium(II)

N Selvakumaran a, R Karvembu a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201548  PMID: 22058701

Abstract

The complex mol­ecule of the title complex, [Pd(C16H23N2OS)2], is completed by crystallographic twofold symmetry with the metal atom lying on the rotation axis. The PdII atom exists within a slightly distorted square-planar geometry defined by a cis-O2S2 donor set. The dihedral angle formed between the mean planes of the symmetry-related six-membered chelate rings is 12.88 (7)° and the bond lengths within the rings are indicative of significant electron delocalization. In the crystal, mol­ecules aggregate into dimers linked by four C—H⋯O inter­actions.

Related literature

For background to the synthesis and cytotoxicity of related PdII complexes of N,N-di(alk­yl/ar­yl)-N′-benzoyl­thio­urea ligands, see: Selvakumaran et al. (2011). graphic file with name e-67-m1394-scheme1.jpg

Experimental

Crystal data

  • [Pd(C16H23N2OS)2]

  • M r = 689.27

  • Tetragonal, Inline graphic

  • a = 13.2737 (1) Å

  • c = 19.5597 (5) Å

  • V = 3446.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.819, T max = 0.874

  • 4752 measured reflections

  • 3229 independent reflections

  • 3152 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.058

  • S = 1.02

  • 3229 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983), 1225 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036853/hb6404sup1.cif

e-67-m1394-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036853/hb6404Isup2.hkl

e-67-m1394-Isup2.hkl (158.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pd—O1 2.0230 (17)
Pd—S1 2.2497 (6)
O1—Pd—S1 93.76 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.43 3.179 (3) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

NS thanks NITT for a Fellowship. The authors thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title complex, (I), was investigated during a study of the synthesis and cytotoxicity profiles of N,N-di(alkyl/aryl)-N'-benzoylthiourea ligands, LH (Selvakumaran et al., 2011).

The PdII atom in (I), Fig. 1, exists in a square planar geometry defined by a cis-O2S2 donor set, Table 1, as found for related PdL2 species (Selvakumaran et al., 2011). The molecule has crystallographically imposed 2-fold symmetry. There are significant deviations from the least-squares plane through the six-membered chelate ring (r.m.s. deviation = 0.233 Å) with the maximum deviations being found for the S1 (0.255 (1) Å) and Pd (–0.163 (1) Å) atoms. The major twist in the ring is found about the N1—C8 bond as seen in the value of the C7—N1—C8—S1 torsion angle of -19.3 (4) °. Nevertheless, the bond distance data, Table 1, are consistent with considerable delocalization of π-electron density over the six atoms; a similar conclusion was made for related species (Selvakumaran et al., 2011). The dihedral angle formed between the symmetry related chelate rings is 12.88 (7) °.

The most prominent intermolecular interactions in the crystal structure are of the type C—H···O, Table 2. These involve benzene-H and the coordinated O atoms, and result in the formation of two molecule aggregates sustained, from symmetry, by four such interactions, Fig. 2.

Experimental

The title complex, (I), was prepared and characterized as in the literature (Selvakumaran et al., 2011). Orange blocks were obtained by slow evaporation of a dichloromethane solution of the complex.

Refinement

The H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The molecule has 2-fold symmetry. Unlabelled atoms are related by the symmetry operation 1 - x, -y, z.

Fig. 2.

Fig. 2.

Two molecule aggregate in (I) mediated by C—H···O interactions shown as orange dashed lines. Hydrogen atoms not participating in C—H···O contacts have been omitted for reasons of clarity.

Crystal data

[Pd(C16H23N2OS)2] Dx = 1.328 Mg m3
Mr = 689.27 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 3599 reflections
Hall symbol: I -4 θ = 3.0–29.3°
a = 13.2737 (1) Å µ = 0.69 mm1
c = 19.5597 (5) Å T = 100 K
V = 3446.25 (9) Å3 Block, orange
Z = 4 0.30 × 0.25 × 0.20 mm
F(000) = 1440

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3229 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3152 reflections with I > 2σ(I)
Mirror Rint = 0.020
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scans h = −17→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −14→13
Tmin = 0.819, Tmax = 0.874 l = −16→25
4752 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.3893P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3229 reflections Δρmax = 0.51 e Å3
186 parameters Δρmin = −0.44 e Å3
0 restraints Absolute structure: Flack (1983), 1225 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd 0.5000 0.0000 0.076929 (11) 0.01307 (7)
S1 0.60853 (5) 0.04633 (5) −0.00563 (3) 0.01761 (13)
O1 0.59796 (13) 0.03016 (13) 0.15347 (9) 0.0178 (4)
N1 0.72361 (18) 0.12436 (17) 0.09978 (10) 0.0178 (5)
N2 0.72955 (17) 0.20604 (16) −0.00131 (11) 0.0183 (5)
C1 0.7459 (2) 0.06393 (19) 0.21341 (13) 0.0176 (5)
C2 0.8469 (2) 0.0954 (2) 0.21380 (14) 0.0215 (6)
H2 0.8761 0.1232 0.1737 0.026*
C3 0.9035 (2) 0.0857 (2) 0.27244 (15) 0.0270 (6)
H3 0.9721 0.1060 0.2723 0.032*
C4 0.8614 (2) 0.0468 (2) 0.33146 (14) 0.0248 (6)
H4 0.9009 0.0404 0.3717 0.030*
C5 0.7609 (2) 0.0169 (2) 0.33165 (13) 0.0231 (6)
H5 0.7315 −0.0094 0.3722 0.028*
C6 0.7041 (2) 0.02554 (19) 0.27269 (13) 0.0193 (5)
H6 0.6356 0.0049 0.2729 0.023*
C7 0.68364 (19) 0.07145 (19) 0.15006 (13) 0.0164 (5)
C8 0.68990 (19) 0.13061 (19) 0.03510 (13) 0.0162 (5)
C9 0.7978 (2) 0.2781 (2) 0.03246 (15) 0.0223 (6)
H9A 0.8344 0.3166 −0.0030 0.027*
H9B 0.8482 0.2400 0.0593 0.027*
C10 0.7437 (2) 0.3523 (2) 0.07997 (17) 0.0274 (6)
H10 0.6951 0.3133 0.1087 0.033*
C11 0.8185 (3) 0.4033 (3) 0.12724 (16) 0.0361 (8)
H11A 0.8555 0.3521 0.1531 0.054*
H11B 0.7824 0.4475 0.1590 0.054*
H11C 0.8660 0.4434 0.1001 0.054*
C12 0.6836 (3) 0.4300 (3) 0.03869 (18) 0.0389 (8)
H12A 0.6494 0.4763 0.0700 0.058*
H12B 0.6334 0.3952 0.0105 0.058*
H12C 0.7295 0.4680 0.0091 0.058*
C13 0.71911 (19) 0.21523 (19) −0.07512 (15) 0.0198 (5)
H13A 0.7031 0.2861 −0.0865 0.024*
H13B 0.6618 0.1731 −0.0903 0.024*
C14 0.8141 (2) 0.1834 (2) −0.11491 (15) 0.0275 (6)
H14 0.8674 0.2352 −0.1065 0.033*
C15 0.7901 (3) 0.1834 (3) −0.19190 (14) 0.0362 (8)
H15A 0.8503 0.1637 −0.2176 0.054*
H15B 0.7690 0.2510 −0.2059 0.054*
H15C 0.7356 0.1354 −0.2011 0.054*
C16 0.8549 (3) 0.0821 (3) −0.09144 (17) 0.0445 (10)
H16A 0.8704 0.0851 −0.0425 0.067*
H16B 0.9164 0.0662 −0.1170 0.067*
H16C 0.8043 0.0297 −0.0997 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd 0.01199 (15) 0.01268 (15) 0.01453 (11) −0.00124 (12) 0.000 0.000
S1 0.0181 (3) 0.0180 (3) 0.0167 (3) −0.0044 (2) 0.0020 (3) −0.0003 (3)
O1 0.0138 (9) 0.0227 (10) 0.0169 (8) −0.0038 (8) −0.0002 (8) 0.0001 (8)
N1 0.0168 (11) 0.0171 (11) 0.0196 (11) −0.0019 (9) 0.0001 (8) −0.0007 (8)
N2 0.0183 (11) 0.0154 (11) 0.0213 (11) −0.0027 (8) 0.0033 (10) 0.0004 (10)
C1 0.0185 (13) 0.0148 (13) 0.0196 (13) 0.0031 (10) −0.0001 (11) −0.0035 (10)
C2 0.0191 (14) 0.0200 (14) 0.0254 (15) −0.0028 (11) 0.0005 (12) 0.0022 (12)
C3 0.0167 (13) 0.0314 (15) 0.0328 (15) −0.0021 (12) −0.0033 (12) −0.0026 (12)
C4 0.0231 (15) 0.0270 (16) 0.0242 (15) 0.0021 (12) −0.0096 (12) −0.0014 (12)
C5 0.0254 (15) 0.0221 (15) 0.0220 (14) −0.0004 (12) −0.0016 (11) −0.0012 (11)
C6 0.0155 (13) 0.0198 (13) 0.0226 (12) −0.0005 (10) −0.0028 (10) −0.0019 (10)
C7 0.0169 (13) 0.0123 (12) 0.0201 (12) 0.0013 (10) 0.0014 (11) −0.0044 (11)
C8 0.0120 (12) 0.0154 (13) 0.0212 (12) 0.0004 (10) 0.0021 (10) 0.0001 (11)
C9 0.0240 (15) 0.0176 (14) 0.0255 (14) −0.0096 (11) 0.0050 (12) −0.0020 (12)
C10 0.0306 (15) 0.0201 (14) 0.0315 (14) −0.0064 (11) 0.0099 (15) −0.0023 (14)
C11 0.047 (2) 0.0327 (18) 0.0289 (16) −0.0097 (15) 0.0074 (15) −0.0085 (14)
C12 0.044 (2) 0.0269 (17) 0.0458 (19) 0.0035 (15) 0.0043 (17) −0.0046 (15)
C13 0.0205 (13) 0.0175 (13) 0.0214 (12) −0.0003 (10) 0.0013 (13) 0.0050 (13)
C14 0.0270 (16) 0.0302 (17) 0.0252 (14) −0.0007 (13) 0.0067 (13) 0.0000 (13)
C15 0.045 (2) 0.0394 (19) 0.0241 (15) −0.0005 (16) 0.0056 (14) 0.0023 (14)
C16 0.045 (2) 0.046 (2) 0.042 (2) 0.0209 (17) 0.0167 (16) 0.0055 (16)

Geometric parameters (Å, °)

Pd—O1i 2.0230 (17) C9—H9A 0.9900
Pd—O1 2.0230 (17) C9—H9B 0.9900
Pd—S1i 2.2497 (6) C10—C11 1.517 (4)
Pd—S1 2.2497 (6) C10—C12 1.533 (5)
S1—C8 1.747 (3) C10—H10 1.0000
O1—C7 1.264 (3) C11—H11A 0.9800
N1—C7 1.320 (3) C11—H11B 0.9800
N1—C8 1.344 (3) C11—H11C 0.9800
N2—C8 1.337 (3) C12—H12A 0.9800
N2—C13 1.455 (3) C12—H12B 0.9800
N2—C9 1.473 (3) C12—H12C 0.9800
C1—C6 1.383 (3) C13—C14 1.541 (4)
C1—C2 1.404 (4) C13—H13A 0.9900
C1—C7 1.493 (3) C13—H13B 0.9900
C2—C3 1.377 (4) C14—C16 1.520 (5)
C2—H2 0.9500 C14—C15 1.539 (4)
C3—C4 1.383 (4) C14—H14 1.0000
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.391 (4) C15—H15B 0.9800
C4—H4 0.9500 C15—H15C 0.9800
C5—C6 1.383 (4) C16—H16A 0.9800
C5—H5 0.9500 C16—H16B 0.9800
C6—H6 0.9500 C16—H16C 0.9800
C9—C10 1.533 (4)
O1i—Pd—O1 84.53 (10) C11—C10—C9 110.5 (3)
O1i—Pd—S1i 93.76 (5) C11—C10—C12 111.2 (2)
O1—Pd—S1i 175.49 (5) C9—C10—C12 110.9 (3)
O1i—Pd—S1 175.49 (5) C11—C10—H10 108.1
O1—Pd—S1 93.76 (5) C9—C10—H10 108.1
S1i—Pd—S1 88.26 (3) C12—C10—H10 108.1
C8—S1—Pd 104.10 (9) C10—C11—H11A 109.5
C7—O1—Pd 128.68 (16) C10—C11—H11B 109.5
C7—N1—C8 126.9 (2) H11A—C11—H11B 109.5
C8—N2—C13 123.6 (2) C10—C11—H11C 109.5
C8—N2—C9 119.3 (2) H11A—C11—H11C 109.5
C13—N2—C9 116.7 (2) H11B—C11—H11C 109.5
C6—C1—C2 119.2 (2) C10—C12—H12A 109.5
C6—C1—C7 119.9 (2) C10—C12—H12B 109.5
C2—C1—C7 120.9 (2) H12A—C12—H12B 109.5
C3—C2—C1 119.9 (3) C10—C12—H12C 109.5
C3—C2—H2 120.1 H12A—C12—H12C 109.5
C1—C2—H2 120.1 H12B—C12—H12C 109.5
C2—C3—C4 120.6 (3) N2—C13—C14 113.6 (2)
C2—C3—H3 119.7 N2—C13—H13A 108.8
C4—C3—H3 119.7 C14—C13—H13A 108.8
C3—C4—C5 119.8 (3) N2—C13—H13B 108.8
C3—C4—H4 120.1 C14—C13—H13B 108.8
C5—C4—H4 120.1 H13A—C13—H13B 107.7
C6—C5—C4 119.8 (3) C16—C14—C15 111.7 (3)
C6—C5—H5 120.1 C16—C14—C13 112.4 (2)
C4—C5—H5 120.1 C15—C14—C13 108.9 (3)
C1—C6—C5 120.7 (2) C16—C14—H14 107.9
C1—C6—H6 119.6 C15—C14—H14 107.9
C5—C6—H6 119.6 C13—C14—H14 107.9
O1—C7—N1 129.2 (2) C14—C15—H15A 109.5
O1—C7—C1 115.2 (2) C14—C15—H15B 109.5
N1—C7—C1 115.6 (2) H15A—C15—H15B 109.5
N2—C8—N1 114.6 (2) C14—C15—H15C 109.5
N2—C8—S1 118.7 (2) H15A—C15—H15C 109.5
N1—C8—S1 126.5 (2) H15B—C15—H15C 109.5
N2—C9—C10 113.6 (2) C14—C16—H16A 109.5
N2—C9—H9A 108.8 C14—C16—H16B 109.5
C10—C9—H9A 108.8 H16A—C16—H16B 109.5
N2—C9—H9B 108.8 C14—C16—H16C 109.5
C10—C9—H9B 108.8 H16A—C16—H16C 109.5
H9A—C9—H9B 107.7 H16B—C16—H16C 109.5
O1i—Pd—S1—C8 42.5 (7) C2—C1—C7—O1 172.0 (2)
O1—Pd—S1—C8 −24.95 (10) C6—C1—C7—N1 168.8 (2)
S1i—Pd—S1—C8 159.09 (10) C2—C1—C7—N1 −11.2 (4)
O1i—Pd—O1—C7 −168.9 (2) C13—N2—C8—N1 167.7 (2)
S1i—Pd—O1—C7 123.2 (6) C9—N2—C8—N1 −4.7 (3)
S1—Pd—O1—C7 6.9 (2) C13—N2—C8—S1 −8.0 (3)
C6—C1—C2—C3 1.4 (4) C9—N2—C8—S1 179.60 (19)
C7—C1—C2—C3 −178.6 (2) C7—N1—C8—N2 165.5 (2)
C1—C2—C3—C4 −1.0 (4) C7—N1—C8—S1 −19.3 (4)
C2—C3—C4—C5 0.1 (4) Pd—S1—C8—N2 −148.11 (19)
C3—C4—C5—C6 0.6 (4) Pd—S1—C8—N1 36.8 (2)
C2—C1—C6—C5 −0.7 (4) C8—N2—C9—C10 −73.8 (3)
C7—C1—C6—C5 179.2 (2) C13—N2—C9—C10 113.2 (3)
C4—C5—C6—C1 −0.2 (4) N2—C9—C10—C11 164.1 (3)
Pd—O1—C7—N1 15.7 (4) N2—C9—C10—C12 −72.2 (3)
Pd—O1—C7—C1 −168.02 (16) C8—N2—C13—C14 −102.4 (3)
C8—N1—C7—O1 −13.8 (4) C9—N2—C13—C14 70.2 (3)
C8—N1—C7—C1 169.9 (2) N2—C13—C14—C16 48.6 (3)
C6—C1—C7—O1 −8.0 (3) N2—C13—C14—C15 172.9 (2)

Symmetry codes: (i) −x+1, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1ii 0.95 2.43 3.179 (3) 136

Symmetry codes: (ii) y+1/2, −x+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6404).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278–284.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036853/hb6404sup1.cif

e-67-m1394-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036853/hb6404Isup2.hkl

e-67-m1394-Isup2.hkl (158.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES