Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1381–m1382. doi: 10.1107/S1600536811035409

μ-Acetato-aqua-μ-(5-bromo-2-{1,3-bis­[2-(5-bromo-2-oxidobenzyl­idene­amino)­eth­yl]imidazolidin-2-yl}phenolato)methano­ldinickel(II) methanol disolvate monohydrate

Ahmed Raza Khan a, Yohannes Tesema a, Ray J Butcher a,*, Yilma Gultneh a
PMCID: PMC3201549  PMID: 22058698

Abstract

The crystal structure of the title compound, [Ni2(C27H24Br3N4O3)(CH3CO2)(CH3OH)(H2O)]·2CH3OH·H2O contains [L(OAc){(CH3OH)Ni}{(H2O)Ni}] mol­ecules {H3 L = 2-(5-bromo-2-hy­droxy­phen­yl)-1,3-bis­[4-(5-bromo-2-hy­droxy­phen­yl)-3-aza­but-3-en­yl]-1,3-imidazolidine} with additional water and two methanol solvent mol­ecules. In this instance, one of the two Ni atoms is coordinated to a water and the other to a methanol mol­ecule. The Ni—O and Ni—N distances, as well as the angles about the metal atoms, show quite regular octa­hedra around the central ions. The Ni—Ophenol—Ni and Ni—Oacetate—Ni angles are not similar [95.26 (13) and 97.34 (13)°, respectively], indicating that this subtle solvate exchange induces significant differences in the conformation adopted. The coordinated methanol ligand is involved in an intra­molecular hydrogen bond to the uncoordinated O atom of the bridging acetate ligand, while the coordinated water mol­ecule forms a hydrogen bond with the one of the methanol solvent mol­ecules. The water solvent mol­ecule forms strong hydrogen bonds to both phenolate O atoms. The remaining methanol solvent mol­ecule also forms a hydrogen bond with this solvent water mol­ecule.

Related literature

For nickel complexes of similar ligands, see: Fondo et al. (2005, 2006a,b , 2007, 2009); Khan et al. (2011); Lu et al. (2007); Paital et al. (2007, 2009).graphic file with name e-67-m1381-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C27H24Br3N4O3)(C2H3O2)(CH4O)(H2O)]·2CH4O·H2O

  • M r = 1000.85

  • Orthorhombic, Inline graphic

  • a = 14.7385 (16) Å

  • b = 18.552 (2) Å

  • c = 14.2504 (15) Å

  • V = 3896.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 168 K

  • 0.49 × 0.12 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.676, T max = 1.000

  • 25239 measured reflections

  • 8737 independent reflections

  • 6627 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.092

  • S = 0.96

  • 8737 reflections

  • 479 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983), 3686 Friedel pairs

  • Flack parameter: 0.007 (8)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035409/wm2523sup1.cif

e-67-m1381-sup1.cif (37.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035409/wm2523Isup2.hkl

e-67-m1381-Isup2.hkl (427.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2Wi 0.80 (2) 2.01 (2) 2.810 (5) 174 (5)
O1W—H1W2⋯O3M 0.82 (2) 1.97 (3) 2.770 (5) 164 (5)
O2W—H2W1⋯O1B 0.80 (2) 1.86 (3) 2.631 (5) 160 (6)
O2W—H2W2⋯O1A 0.83 (2) 1.91 (2) 2.744 (5) 177 (6)
O1M—H1M⋯O2AA 0.84 1.77 2.602 (5) 174
O2M—H2M⋯O2W 0.84 1.89 2.725 (5) 172
O3M—H3M⋯O2Mi 0.84 1.96 2.753 (6) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. ARK and YT wish to acknowledge the Howard University Graduate School of Arts & Sciences for the award of Teaching Assistanceships.

supplementary crystallographic information

Comment

Nickel complexes of the compartmental triprotic heptadentate ligand, 2-hydroxyphenyl-1,3-bis[4-(2-hydroxyphenyl)-3-azabut- 3-enyl]-1,3-imidazolidine and its derivatives have been of interest for their ability to give rise to dinuclear compounds with a predefined ground state (Fondo et al., 2005, 2006a,b, 2007, 2009; Lu et al., 2007; Paital, et al., 2007, 2009). Density functional theory (DFT) calculations demonstrated that the Schiff base provides an NCN bridge between the metal ions that helps to mediate the ferromagnetic exchange (Fondo, et al., 2005). Consequently, the use of suitable cross-linking ligands between the dinuclear units could be a route to produce complexes of higher nuclearity, with all of the unpaired electrons aligned parallel to each other. The type of complex obtained depends on the synthesis conditions as the coordination environment about the metals is usually completed by coordinating solvent molecules.

The crystal structure shows that the title compound, [Ni2(CH3CO2)(C27H24Br3N4O3) (H2O)(CH3OH)].2CH3OH.H2O, (I), contains [L(OAc){(CH3OH)Ni}{(H2O)Ni}] molecules (H3L = 2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2- hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) with water and two methanol molecules as solvates. In this instance one of the two nickel atoms is coordinated to a water and the other to a methanol molecule. This is in contrast to its related complex involving the ligand 2-(5-chloro-2-hydroxyphenyl)-1,3-bis[4-(5-chloro-2-hydroxyphenyl)-3-azabut-3- enyl]-1,3-imidazolidine, which was synthesized under similar conditions. In this case both nickel atoms contain coordinated methanol molecules (Khan et al., 2011). It has previous been observed that nickel complexes involving this type of ligand are prone to solvate exchange (Fondo et al., 2009).

(I) is a neutral dinuclear compound, where the L3- Schiff base acts as a trianionic heptadentate ligand, using each one of its N2O compartments to coordinate a nickel atom. Thus, the metal atoms are joined to one terminal phenol oxygen (O1A, O1B), an iminic nitrogen (N1A, N1B), and an aminic nitrogen atom (N1, N2), with the aminic NCN group (N2—C7—N2) acting as a bridge between both nickel ions. In addition, the nickel atoms are linked by the endogenous phenolate oxygen atom (O1) of the central ligand arm and by an exogenous bridging monodentate acetate group (O11A). This gives rise to a nearly planar Ni2O2 metallacycle, with an intramolecular Ni—Ni distance of 3.0927 (9) Å. The coordination spheres of the nickel atoms are completed by solvent molecules. In the case of Ni1A by water and in the case of Ni1B by methanol molecules. Therefore, the metal atoms are hexacoordinated in a N2O4 environment, with an octahedral geometry. The Ni—O and Ni—N distances, as well as the angles about the metal atoms, show quite regular polyhedra around the central ions. However, unlike the analogous complex formed with 2-(5-chloro-2-hydroxyphenyl)-1,3-bis[4-(5-chloro-2- hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine (Khan et al., 2011) the Ni—Ophenol—Ni and Ni—Oacetate—Ni angles are not similar [95.26 (13)° and 97.34 (13)°, respectively] and more closely related to a similar complex (Fondo et al., 2009) with a similar coordination environment about the two Ni atoms (one with water and the other with methanol coordinated). Thus this subtle solvate exchange induces significant differences in the conformation adopted. There are structures of Ni complexes involving similar ligands reported in the literature which differ only in the nature of the coordinating solvent (H2O) and solvate molecules (H2O, CH3CN) in the lattice (Fondo et al., 2006b) and similar differences are observed.

The coordinated methanol ligand is involved in an intramolecular hydrogen bond to the uncoordinated O atom (O2AA) of the bridging acetate ligand while the coordinated water molecule forms a hydrogen bond with the one of the methanol solvate molecules. The solvate water molecule forms strong hydrogen bonds to both O1A and O1B. The remaining methanol solvate molecule also forms a hydrogen bond with this water solvate molecule.

Experimental

For the synthesis of the ligand (H3L) methanol solutions of triethylenetetramine and 5-bromosalicylaldehyde were mixed in a 1:3 molar ratio. After heating at 333 K for a few minutes, diethylether was added to this mixture, and yellow crystals were separated, filtered and recrystallized from methanol solution: Mp 376 K. For synthesis of the complex, to a stirred methanol solution (25 ml) of [Ni(OAc)2].4H2O (1.5 g, 2.67 mmol) was added 1.33 g (5.35 mmol) of the ligand H3L. Slow evaporation of the green filtrate overnight yielded green to brownish cystal suitable for X-ray analysis in 70% yield.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with an O—H distance of 0.84 and C—H distances of 0.95 - 0.99 Å [Uiso(H) = 1.2Ueq(OH, CH, CH2) [Uiso(H) = 1.5Ueq(CH3)]. Water H atoms were refined isotropically with O—H distances restrained to 0.82 Å and H—O—H angle to 104.5° with [Uiso(H) = 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I), C32H43Br3N4Ni2O10, showing the atom labeling with displacement ellipsoids at the 30% probability level. All H atoms except those involved in the hydrogen bonding were removed for clarity. Hydrogen bonds are shown by dashed lines.

Fig. 2.

Fig. 2.

The molecular packing for C32H43Br3N4Ni2O10 viewed down the c axis. Hydrogen bonds are shown by dashed lines.

Crystal data

[Ni2(C27H24Br3N4O3)(C2H3O2)(CH4O)(H2O)]·2CH4O·H2O F(000) = 2016
Mr = 1000.85 Dx = 1.706 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 7492 reflections
a = 14.7385 (16) Å θ = 2.3–26.7°
b = 18.552 (2) Å µ = 4.10 mm1
c = 14.2504 (15) Å T = 168 K
V = 3896.4 (7) Å3 Needle, brown
Z = 4 0.49 × 0.12 × 0.06 mm

Data collection

Bruker SMART 1000 CCD diffractometer 8737 independent reflections
Radiation source: fine-focus sealed tube 6627 reflections with I > 2σ(I)
graphite Rint = 0.054
φ and ω scans θmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −19→16
Tmin = 0.676, Tmax = 1.000 k = −24→19
25239 measured reflections l = −18→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0457P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
8737 reflections Δρmax = 0.71 e Å3
479 parameters Δρmin = −0.73 e Å3
7 restraints Absolute structure: Flack (1983), 3686 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.007 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1A 0.91124 (4) 0.76904 (3) 0.22387 (4) 0.02018 (13)
Ni1B 0.94953 (4) 0.60931 (3) 0.27176 (4) 0.02102 (13)
Br 0.94521 (4) 0.74287 (4) 0.73692 (4) 0.04501 (16)
Br1A 1.18571 (4) 1.09747 (3) 0.11852 (4) 0.04143 (15)
Br1B 1.35626 (4) 0.37081 (3) 0.29322 (5) 0.04296 (16)
O1 0.9917 (2) 0.71201 (17) 0.3177 (2) 0.0215 (7)
O1A 1.0148 (2) 0.80326 (17) 0.1449 (2) 0.0242 (7)
O1B 1.0661 (2) 0.58968 (18) 0.2059 (2) 0.0270 (8)
O11A 0.9104 (2) 0.67067 (18) 0.1578 (2) 0.0223 (7)
O2AA 0.8697 (3) 0.5877 (2) 0.0550 (3) 0.0340 (9)
O1W 0.8185 (2) 0.8101 (2) 0.1226 (3) 0.0331 (8)
H1W1 0.7642 (13) 0.808 (3) 0.119 (4) 0.050*
H1W2 0.835 (3) 0.844 (2) 0.089 (4) 0.050*
O2W 1.1295 (2) 0.69264 (18) 0.0972 (2) 0.0261 (8)
H2W1 1.106 (3) 0.6574 (16) 0.119 (4) 0.039*
H2W2 1.096 (3) 0.7270 (17) 0.113 (4) 0.039*
O1M 0.8879 (2) 0.51575 (18) 0.2106 (3) 0.0320 (9)
H1M 0.8806 0.5361 0.1585 0.038*
O2M 1.1750 (3) 0.6277 (2) −0.0678 (3) 0.0433 (10)
H2M 1.1557 0.6474 −0.0185 0.052*
O3M 0.8398 (3) 0.9221 (3) −0.0041 (3) 0.0471 (11)
H3M 0.7981 0.8972 −0.0278 0.057*
N1 0.7953 (2) 0.7411 (2) 0.3129 (3) 0.0208 (9)
N2 0.8242 (3) 0.6225 (2) 0.3479 (3) 0.0212 (9)
N1A 0.9061 (2) 0.8629 (2) 0.2906 (3) 0.0227 (9)
N1B 0.9873 (3) 0.5495 (2) 0.3811 (3) 0.0237 (9)
C1 0.9803 (3) 0.7248 (3) 0.4090 (3) 0.0230 (11)
C2 1.0506 (3) 0.7471 (3) 0.4670 (4) 0.0336 (13)
H2A 1.1075 0.7582 0.4392 0.040*
C3 1.0418 (4) 0.7540 (3) 0.5630 (4) 0.0380 (14)
H3A 1.0920 0.7689 0.6001 0.046*
C4 0.9591 (4) 0.7391 (3) 0.6046 (4) 0.0309 (12)
C5 0.8851 (3) 0.7210 (3) 0.5493 (3) 0.0255 (11)
H5A 0.8275 0.7132 0.5775 0.031*
C6 0.8950 (3) 0.7144 (3) 0.4532 (3) 0.0219 (11)
C7 0.8156 (3) 0.6939 (3) 0.3951 (3) 0.0233 (11)
H7A 0.7608 0.6927 0.4364 0.028*
C8 0.7254 (3) 0.6988 (3) 0.2607 (3) 0.0239 (11)
H8A 0.7336 0.7040 0.1921 0.029*
H8B 0.6635 0.7149 0.2777 0.029*
C9 0.7410 (3) 0.6207 (3) 0.2912 (4) 0.0267 (11)
H9A 0.6892 0.6029 0.3288 0.032*
H9B 0.7489 0.5891 0.2359 0.032*
C1A 0.7612 (4) 0.8134 (3) 0.3400 (4) 0.0293 (12)
H1AA 0.7203 0.8085 0.3947 0.035*
H1AB 0.7253 0.8337 0.2874 0.035*
C2A 0.8367 (4) 0.8651 (3) 0.3643 (4) 0.0286 (12)
H2AA 0.8123 0.9146 0.3700 0.034*
H2AB 0.8640 0.8515 0.4253 0.034*
C3A 0.9487 (3) 0.9210 (2) 0.2692 (4) 0.0243 (10)
H3AA 0.9335 0.9634 0.3031 0.029*
C4A 1.0182 (3) 0.9272 (3) 0.1972 (3) 0.0235 (11)
C5A 1.0590 (3) 0.9946 (3) 0.1885 (3) 0.0276 (12)
H5AA 1.0396 1.0331 0.2275 0.033*
C6A 1.1270 (3) 1.0062 (3) 0.1243 (4) 0.0311 (12)
C7A 1.1550 (4) 0.9513 (3) 0.0658 (4) 0.0302 (12)
H7AA 1.2014 0.9597 0.0208 0.036*
C8A 1.1158 (3) 0.8849 (3) 0.0731 (4) 0.0259 (11)
H8AA 1.1348 0.8478 0.0315 0.031*
C9A 1.0476 (3) 0.8692 (3) 0.1405 (3) 0.0211 (10)
C1B 0.8263 (3) 0.5603 (3) 0.4150 (3) 0.0266 (12)
H1BA 0.8070 0.5161 0.3816 0.032*
H1BB 0.7823 0.5693 0.4661 0.032*
C2B 0.9192 (3) 0.5476 (3) 0.4575 (3) 0.0268 (12)
H2BA 0.9328 0.5855 0.5044 0.032*
H2BB 0.9208 0.5003 0.4894 0.032*
C3B 1.0569 (3) 0.5090 (3) 0.3867 (4) 0.0258 (11)
H3BA 1.0640 0.4810 0.4421 0.031*
C4B 1.1270 (3) 0.5023 (3) 0.3140 (3) 0.0220 (10)
C5B 1.1949 (3) 0.4516 (3) 0.3329 (4) 0.0284 (12)
H5BA 1.1935 0.4248 0.3897 0.034*
C6B 1.2640 (3) 0.4404 (2) 0.2688 (4) 0.0255 (11)
C7B 1.2655 (3) 0.4783 (3) 0.1860 (4) 0.0267 (11)
H7BA 1.3128 0.4701 0.1420 0.032*
C8B 1.1996 (3) 0.5278 (3) 0.1668 (4) 0.0254 (11)
H8BA 1.2023 0.5538 0.1095 0.030*
C9B 1.1275 (3) 0.5415 (2) 0.2293 (4) 0.0221 (10)
C1AA 0.8968 (3) 0.6495 (3) 0.0734 (4) 0.0246 (11)
C2AA 0.9144 (4) 0.7004 (3) −0.0069 (4) 0.0354 (14)
H2AC 0.9538 0.6769 −0.0531 0.053*
H2AD 0.9441 0.7440 0.0168 0.053*
H2AE 0.8567 0.7134 −0.0366 0.053*
C1M 0.9324 (4) 0.4483 (3) 0.1970 (5) 0.0475 (17)
H1MA 0.8951 0.4175 0.1565 0.071*
H1MB 0.9411 0.4246 0.2578 0.071*
H1MC 0.9915 0.4564 0.1673 0.071*
C2M 1.1886 (5) 0.6806 (4) −0.1371 (5) 0.067 (2)
H2MA 1.2129 0.6579 −0.1939 0.101*
H2MB 1.2317 0.7167 −0.1141 0.101*
H2MC 1.1306 0.7039 −0.1517 0.101*
C3M 0.9083 (6) 0.9318 (7) −0.0695 (6) 0.119 (5)
H3M1 0.9358 0.8851 −0.0844 0.178*
H3M2 0.9546 0.9640 −0.0436 0.178*
H3M3 0.8829 0.9531 −0.1267 0.178*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1A 0.0220 (3) 0.0193 (3) 0.0192 (3) 0.0021 (2) 0.0017 (3) 0.0004 (3)
Ni1B 0.0247 (3) 0.0203 (3) 0.0181 (3) 0.0015 (2) 0.0013 (3) 0.0023 (3)
Br 0.0482 (3) 0.0678 (4) 0.0190 (3) 0.0032 (3) −0.0009 (3) −0.0048 (3)
Br1A 0.0510 (4) 0.0299 (3) 0.0434 (3) −0.0129 (3) −0.0024 (3) 0.0073 (3)
Br1B 0.0395 (3) 0.0385 (3) 0.0509 (4) 0.0175 (2) 0.0036 (3) 0.0121 (3)
O1 0.0211 (17) 0.0257 (18) 0.0178 (17) 0.0023 (13) 0.0012 (13) 0.0022 (14)
O1A 0.0263 (18) 0.0211 (19) 0.0253 (19) 0.0010 (14) 0.0037 (14) −0.0027 (15)
O1B 0.0300 (19) 0.0273 (19) 0.0239 (19) 0.0065 (14) 0.0047 (14) 0.0101 (15)
O11A 0.0271 (18) 0.0228 (19) 0.0169 (17) 0.0012 (14) −0.0042 (14) 0.0006 (14)
O2AA 0.046 (2) 0.031 (2) 0.025 (2) −0.0039 (17) −0.0010 (17) −0.0087 (17)
O1W 0.0222 (17) 0.036 (2) 0.041 (2) 0.0025 (17) −0.0027 (17) 0.016 (2)
O2W 0.0271 (19) 0.0209 (19) 0.030 (2) 0.0018 (15) 0.0038 (15) 0.0039 (16)
O1M 0.038 (2) 0.026 (2) 0.032 (2) −0.0018 (16) −0.0003 (17) 0.0011 (17)
O2M 0.065 (3) 0.034 (2) 0.032 (2) 0.007 (2) 0.003 (2) −0.0002 (19)
O3M 0.043 (3) 0.057 (3) 0.042 (3) −0.008 (2) 0.0026 (19) 0.019 (2)
N1 0.0168 (19) 0.025 (2) 0.021 (2) 0.0044 (16) 0.0005 (15) 0.0000 (18)
N2 0.026 (2) 0.020 (2) 0.018 (2) −0.0001 (17) −0.0020 (16) 0.0008 (17)
N1A 0.0210 (19) 0.020 (2) 0.027 (2) 0.0050 (16) 0.0055 (19) 0.0004 (18)
N1B 0.030 (2) 0.026 (2) 0.015 (2) 0.0004 (18) −0.0009 (17) 0.0049 (18)
C1 0.025 (3) 0.023 (3) 0.020 (2) 0.007 (2) 0.000 (2) −0.005 (2)
C2 0.023 (3) 0.050 (4) 0.028 (3) 0.002 (3) −0.001 (2) −0.010 (3)
C3 0.031 (3) 0.056 (4) 0.027 (3) 0.003 (3) −0.008 (2) −0.011 (3)
C4 0.035 (3) 0.036 (3) 0.021 (3) 0.008 (2) −0.001 (2) −0.001 (2)
C5 0.025 (3) 0.030 (3) 0.021 (3) 0.001 (2) 0.003 (2) 0.000 (2)
C6 0.024 (3) 0.022 (3) 0.019 (2) 0.005 (2) −0.002 (2) 0.000 (2)
C7 0.023 (3) 0.025 (3) 0.023 (3) −0.001 (2) 0.004 (2) 0.000 (2)
C8 0.023 (2) 0.026 (3) 0.023 (3) 0.0025 (19) 0.0003 (19) 0.001 (2)
C9 0.024 (2) 0.029 (3) 0.027 (3) −0.006 (2) −0.001 (2) 0.003 (2)
C1A 0.032 (3) 0.030 (3) 0.026 (3) 0.003 (2) 0.003 (2) 0.001 (2)
C2A 0.036 (3) 0.023 (3) 0.027 (3) 0.006 (2) 0.014 (2) −0.002 (2)
C3A 0.029 (2) 0.017 (2) 0.027 (3) 0.002 (2) −0.001 (2) −0.006 (2)
C4A 0.026 (2) 0.021 (3) 0.024 (3) −0.001 (2) −0.002 (2) 0.005 (2)
C5A 0.029 (3) 0.029 (3) 0.025 (3) 0.002 (2) −0.002 (2) −0.001 (2)
C6A 0.031 (3) 0.029 (3) 0.034 (3) −0.003 (2) −0.004 (2) 0.007 (3)
C7A 0.032 (3) 0.031 (3) 0.028 (3) 0.002 (2) 0.004 (2) 0.010 (2)
C8A 0.029 (3) 0.025 (3) 0.025 (3) 0.004 (2) 0.002 (2) 0.005 (2)
C9A 0.021 (2) 0.022 (3) 0.021 (2) 0.0049 (19) −0.0039 (19) 0.003 (2)
C1B 0.030 (3) 0.028 (3) 0.021 (3) 0.002 (2) 0.009 (2) 0.008 (2)
C2B 0.031 (3) 0.027 (3) 0.022 (3) 0.003 (2) 0.010 (2) 0.008 (2)
C3B 0.029 (3) 0.024 (3) 0.024 (3) 0.002 (2) −0.003 (2) 0.009 (2)
C4B 0.022 (2) 0.022 (3) 0.021 (3) −0.0018 (19) −0.0024 (19) 0.007 (2)
C5B 0.032 (3) 0.021 (3) 0.032 (3) −0.001 (2) −0.002 (2) 0.005 (2)
C6B 0.027 (3) 0.019 (2) 0.031 (3) 0.0052 (19) −0.001 (2) 0.004 (2)
C7B 0.027 (3) 0.024 (3) 0.029 (3) 0.006 (2) 0.007 (2) −0.004 (2)
C8B 0.029 (3) 0.023 (3) 0.024 (3) 0.002 (2) 0.003 (2) 0.004 (2)
C9B 0.028 (2) 0.018 (2) 0.021 (2) 0.0002 (19) 0.000 (2) 0.000 (2)
C1AA 0.023 (3) 0.028 (3) 0.022 (3) 0.004 (2) 0.000 (2) −0.001 (2)
C2AA 0.040 (3) 0.043 (4) 0.023 (3) −0.005 (3) −0.005 (2) 0.006 (3)
C1M 0.049 (4) 0.029 (3) 0.064 (5) −0.001 (3) −0.007 (3) −0.009 (3)
C2M 0.082 (6) 0.065 (5) 0.055 (5) −0.010 (4) −0.001 (4) 0.014 (4)
C3M 0.048 (5) 0.231 (13) 0.077 (7) 0.013 (7) 0.019 (4) 0.088 (8)

Geometric parameters (Å, °)

Ni1A—N1A 1.986 (4) C7—H7A 1.0000
Ni1A—O1A 2.000 (3) C8—C9 1.529 (7)
Ni1A—O11A 2.053 (3) C8—H8A 0.9900
Ni1A—O1 2.077 (3) C8—H8B 0.9900
Ni1A—O1W 2.129 (3) C9—H9A 0.9900
Ni1A—N1 2.190 (4) C9—H9B 0.9900
Ni1A—Ni1B 3.0927 (9) C1A—C2A 1.510 (7)
Ni1B—O1B 1.991 (3) C1A—H1AA 0.9900
Ni1B—N1B 1.992 (4) C1A—H1AB 0.9900
Ni1B—O11A 2.065 (3) C2A—H2AA 0.9900
Ni1B—O1 2.109 (3) C2A—H2AB 0.9900
Ni1B—O1M 2.144 (3) C3A—C4A 1.455 (7)
Ni1B—N2 2.157 (4) C3A—H3AA 0.9500
Br—C4 1.898 (5) C4A—C5A 1.392 (7)
Br1A—C6A 1.904 (5) C4A—C9A 1.413 (7)
Br1B—C6B 1.907 (5) C5A—C6A 1.373 (7)
O1—C1 1.333 (5) C5A—H5AA 0.9500
O1A—C9A 1.317 (6) C6A—C7A 1.378 (8)
O1B—C9B 1.315 (5) C7A—C8A 1.365 (7)
O11A—C1AA 1.282 (6) C7A—H7AA 0.9500
O2AA—C1AA 1.243 (6) C8A—C9A 1.421 (7)
O1W—H1W1 0.802 (19) C8A—H8AA 0.9500
O1W—H1W2 0.823 (19) C1B—C2B 1.515 (7)
O2W—H2W1 0.803 (19) C1B—H1BA 0.9900
O2W—H2W2 0.832 (19) C1B—H1BB 0.9900
O1M—C1M 1.426 (6) C2B—H2BA 0.9900
O1M—H1M 0.8400 C2B—H2BB 0.9900
O2M—C2M 1.406 (8) C3B—C4B 1.469 (7)
O2M—H2M 0.8400 C3B—H3BA 0.9500
O3M—C3M 1.385 (8) C4B—C5B 1.400 (7)
O3M—H3M 0.8400 C4B—C9B 1.409 (6)
N1—C1A 1.485 (6) C5B—C6B 1.383 (7)
N1—C7 1.493 (6) C5B—H5BA 0.9500
N1—C8 1.493 (6) C6B—C7B 1.374 (7)
N2—C9 1.469 (6) C7B—C8B 1.365 (7)
N2—C7 1.490 (6) C7B—H7BA 0.9500
N2—C1B 1.499 (6) C8B—C9B 1.409 (7)
N1A—C3A 1.284 (6) C8B—H8BA 0.9500
N1A—C2A 1.466 (6) C1AA—C2AA 1.505 (7)
N1B—C3B 1.274 (6) C2AA—H2AC 0.9800
N1B—C2B 1.481 (6) C2AA—H2AD 0.9800
C1—C2 1.388 (7) C2AA—H2AE 0.9800
C1—C6 1.419 (7) C1M—H1MA 0.9800
C2—C3 1.380 (7) C1M—H1MB 0.9800
C2—H2A 0.9500 C1M—H1MC 0.9800
C3—C4 1.383 (8) C2M—H2MA 0.9800
C3—H3A 0.9500 C2M—H2MB 0.9800
C4—C5 1.387 (7) C2M—H2MC 0.9800
C5—C6 1.383 (7) C3M—H3M1 0.9800
C5—H5A 0.9500 C3M—H3M2 0.9800
C6—C7 1.484 (7) C3M—H3M3 0.9800
N1A—Ni1A—O1A 91.15 (14) C9—C8—H8A 110.8
N1A—Ni1A—O11A 177.16 (14) N1—C8—H8B 110.8
O1A—Ni1A—O11A 91.63 (13) C9—C8—H8B 110.8
N1A—Ni1A—O1 99.20 (15) H8A—C8—H8B 108.9
O1A—Ni1A—O1 95.07 (13) N2—C9—C8 105.1 (4)
O11A—Ni1A—O1 81.13 (13) N2—C9—H9A 110.7
N1A—Ni1A—O1W 89.21 (16) C8—C9—H9A 110.7
O1A—Ni1A—O1W 89.69 (14) N2—C9—H9B 110.7
O11A—Ni1A—O1W 90.22 (14) C8—C9—H9B 110.7
O1—Ni1A—O1W 170.23 (14) H9A—C9—H9B 108.8
N1A—Ni1A—N1 84.31 (15) N1—C1A—C2A 112.6 (4)
O1A—Ni1A—N1 175.19 (14) N1—C1A—H1AA 109.1
O11A—Ni1A—N1 92.89 (14) C2A—C1A—H1AA 109.1
O1—Ni1A—N1 87.26 (13) N1—C1A—H1AB 109.1
O1W—Ni1A—N1 88.65 (14) C2A—C1A—H1AB 109.1
N1A—Ni1A—Ni1B 137.86 (12) H1AA—C1A—H1AB 107.8
O1A—Ni1A—Ni1B 106.81 (9) N1A—C2A—C1A 109.4 (4)
O11A—Ni1A—Ni1B 41.47 (9) N1A—C2A—H2AA 109.8
O1—Ni1A—Ni1B 42.76 (9) C1A—C2A—H2AA 109.8
O1W—Ni1A—Ni1B 127.59 (11) N1A—C2A—H2AB 109.8
N1—Ni1A—Ni1B 77.74 (10) C1A—C2A—H2AB 109.8
O1B—Ni1B—N1B 91.46 (15) H2AA—C2A—H2AB 108.2
O1B—Ni1B—O11A 88.35 (13) N1A—C3A—C4A 125.3 (4)
N1B—Ni1B—O11A 179.59 (16) N1A—C3A—H3AA 117.3
O1B—Ni1B—O1 93.27 (14) C4A—C3A—H3AA 117.3
N1B—Ni1B—O1 100.24 (15) C5A—C4A—C9A 120.0 (4)
O11A—Ni1B—O1 80.13 (13) C5A—C4A—C3A 116.0 (4)
O1B—Ni1B—O1M 91.50 (14) C9A—C4A—C3A 123.9 (4)
N1B—Ni1B—O1M 89.16 (16) C6A—C5A—C4A 121.0 (5)
O11A—Ni1B—O1M 90.49 (13) C6A—C5A—H5AA 119.5
O1—Ni1B—O1M 169.33 (13) C4A—C5A—H5AA 119.5
O1B—Ni1B—N2 175.60 (14) C5A—C6A—C7A 120.4 (5)
N1B—Ni1B—N2 84.77 (16) C5A—C6A—Br1A 120.0 (4)
O11A—Ni1B—N2 95.40 (14) C7A—C6A—Br1A 119.6 (4)
O1—Ni1B—N2 89.65 (13) C8A—C7A—C6A 119.6 (5)
O1M—Ni1B—N2 86.18 (14) C8A—C7A—H7AA 120.2
O1B—Ni1B—Ni1A 103.23 (10) C6A—C7A—H7AA 120.2
N1B—Ni1B—Ni1A 139.22 (12) C7A—C8A—C9A 122.4 (5)
O11A—Ni1B—Ni1A 41.19 (9) C7A—C8A—H8AA 118.8
O1—Ni1B—Ni1A 41.98 (8) C9A—C8A—H8AA 118.8
O1M—Ni1B—Ni1A 127.49 (10) O1A—C9A—C4A 124.6 (4)
N2—Ni1B—Ni1A 81.14 (11) O1A—C9A—C8A 118.8 (4)
C1—O1—Ni1A 117.8 (3) C4A—C9A—C8A 116.6 (4)
C1—O1—Ni1B 115.3 (3) N2—C1B—C2B 113.2 (4)
Ni1A—O1—Ni1B 95.26 (13) N2—C1B—H1BA 108.9
C9A—O1A—Ni1A 127.0 (3) C2B—C1B—H1BA 108.9
C9B—O1B—Ni1B 126.8 (3) N2—C1B—H1BB 108.9
C1AA—O11A—Ni1A 134.7 (3) C2B—C1B—H1BB 108.9
C1AA—O11A—Ni1B 127.8 (3) H1BA—C1B—H1BB 107.8
Ni1A—O11A—Ni1B 97.34 (13) N1B—C2B—C1B 108.3 (4)
Ni1A—O1W—H1W1 132 (4) N1B—C2B—H2BA 110.0
Ni1A—O1W—H1W2 119 (4) C1B—C2B—H2BA 110.0
H1W1—O1W—H1W2 107 (3) N1B—C2B—H2BB 110.0
H2W1—O2W—H2W2 105 (3) C1B—C2B—H2BB 110.0
C1M—O1M—Ni1B 124.8 (3) H2BA—C2B—H2BB 108.4
C1M—O1M—H1M 109.5 N1B—C3B—C4B 124.9 (5)
Ni1B—O1M—H1M 92.8 N1B—C3B—H3BA 117.6
C2M—O2M—H2M 109.5 C4B—C3B—H3BA 117.6
C3M—O3M—H3M 109.5 C5B—C4B—C9B 120.5 (4)
C1A—N1—C7 113.2 (4) C5B—C4B—C3B 115.0 (4)
C1A—N1—C8 111.8 (4) C9B—C4B—C3B 124.4 (4)
C7—N1—C8 102.7 (4) C6B—C5B—C4B 120.0 (5)
C1A—N1—Ni1A 101.6 (3) C6B—C5B—H5BA 120.0
C7—N1—Ni1A 115.9 (3) C4B—C5B—H5BA 120.0
C8—N1—Ni1A 112.0 (3) C7B—C6B—C5B 120.1 (4)
C9—N2—C7 101.4 (4) C7B—C6B—Br1B 119.4 (4)
C9—N2—C1B 110.6 (4) C5B—C6B—Br1B 120.4 (4)
C7—N2—C1B 113.5 (4) C8B—C7B—C6B 120.3 (5)
C9—N2—Ni1B 115.8 (3) C8B—C7B—H7BA 119.8
C7—N2—Ni1B 113.6 (3) C6B—C7B—H7BA 119.8
C1B—N2—Ni1B 102.4 (3) C7B—C8B—C9B 122.1 (5)
C3A—N1A—C2A 119.2 (4) C7B—C8B—H8BA 119.0
C3A—N1A—Ni1A 127.1 (3) C9B—C8B—H8BA 119.0
C2A—N1A—Ni1A 113.2 (3) O1B—C9B—C4B 124.3 (4)
C3B—N1B—C2B 119.1 (4) O1B—C9B—C8B 118.8 (4)
C3B—N1B—Ni1B 127.1 (3) C4B—C9B—C8B 116.9 (4)
C2B—N1B—Ni1B 113.5 (3) O2AA—C1AA—O11A 122.1 (5)
O1—C1—C2 122.7 (5) O2AA—C1AA—C2AA 118.3 (5)
O1—C1—C6 121.4 (4) O11A—C1AA—C2AA 119.6 (5)
C2—C1—C6 115.9 (5) C1AA—C2AA—H2AC 109.5
C3—C2—C1 123.2 (5) C1AA—C2AA—H2AD 109.5
C3—C2—H2A 118.4 H2AC—C2AA—H2AD 109.5
C1—C2—H2A 118.4 C1AA—C2AA—H2AE 109.5
C2—C3—C4 119.3 (5) H2AC—C2AA—H2AE 109.5
C2—C3—H3A 120.4 H2AD—C2AA—H2AE 109.5
C4—C3—H3A 120.4 O1M—C1M—H1MA 109.5
C3—C4—C5 119.9 (5) O1M—C1M—H1MB 109.5
C3—C4—Br 120.9 (4) H1MA—C1M—H1MB 109.5
C5—C4—Br 119.2 (4) O1M—C1M—H1MC 109.5
C6—C5—C4 120.0 (5) H1MA—C1M—H1MC 109.5
C6—C5—H5A 120.0 H1MB—C1M—H1MC 109.5
C4—C5—H5A 120.0 O2M—C2M—H2MA 109.5
C5—C6—C1 121.4 (5) O2M—C2M—H2MB 109.5
C5—C6—C7 119.5 (4) H2MA—C2M—H2MB 109.5
C1—C6—C7 119.1 (4) O2M—C2M—H2MC 109.5
C6—C7—N2 114.4 (4) H2MA—C2M—H2MC 109.5
C6—C7—N1 116.5 (4) H2MB—C2M—H2MC 109.5
N2—C7—N1 100.6 (4) O3M—C3M—H3M1 109.5
C6—C7—H7A 108.3 O3M—C3M—H3M2 109.5
N2—C7—H7A 108.3 H3M1—C3M—H3M2 109.5
N1—C7—H7A 108.3 O3M—C3M—H3M3 109.5
N1—C8—C9 104.6 (4) H3M1—C3M—H3M3 109.5
N1—C8—H8A 110.8 H3M2—C3M—H3M3 109.5
N1A—Ni1A—Ni1B—O1B −112.42 (19) O1M—Ni1B—N2—C1B 69.5 (3)
O1A—Ni1A—Ni1B—O1B −1.01 (14) Ni1A—Ni1B—N2—C1B −161.6 (3)
O11A—Ni1A—Ni1B—O1B 71.72 (18) O1A—Ni1A—N1A—C3A 9.8 (4)
O1—Ni1A—Ni1B—O1B −80.01 (16) O1—Ni1A—N1A—C3A 105.1 (4)
O1W—Ni1A—Ni1B—O1B 102.02 (17) O1W—Ni1A—N1A—C3A −79.9 (4)
N1—Ni1A—Ni1B—O1B −179.38 (15) N1—Ni1A—N1A—C3A −168.6 (4)
N1A—Ni1A—Ni1B—N1B −4.2 (2) Ni1B—Ni1A—N1A—C3A 126.8 (4)
O1A—Ni1A—Ni1B—N1B 107.2 (2) O1A—Ni1A—N1A—C2A −178.3 (3)
O11A—Ni1A—Ni1B—N1B 179.9 (2) O1—Ni1A—N1A—C2A −82.9 (3)
O1—Ni1A—Ni1B—N1B 28.2 (2) O1W—Ni1A—N1A—C2A 92.1 (3)
O1W—Ni1A—Ni1B—N1B −149.8 (2) N1—Ni1A—N1A—C2A 3.3 (3)
N1—Ni1A—Ni1B—N1B −71.2 (2) Ni1B—Ni1A—N1A—C2A −61.3 (4)
N1A—Ni1A—Ni1B—O11A 175.9 (2) O1B—Ni1B—N1B—C3B −8.8 (5)
O1A—Ni1A—Ni1B—O11A −72.73 (17) O1—Ni1B—N1B—C3B −102.4 (4)
O1—Ni1A—Ni1B—O11A −151.73 (19) O1M—Ni1B—N1B—C3B 82.7 (5)
O1W—Ni1A—Ni1B—O11A 30.3 (2) N2—Ni1B—N1B—C3B 168.9 (5)
N1—Ni1A—Ni1B—O11A 108.89 (18) Ni1A—Ni1B—N1B—C3B −121.1 (4)
N1A—Ni1A—Ni1B—O1 −32.4 (2) O1B—Ni1B—N1B—C2B 178.6 (3)
O1A—Ni1A—Ni1B—O1 79.00 (16) O1—Ni1B—N1B—C2B 85.0 (3)
O11A—Ni1A—Ni1B—O1 151.73 (19) O1M—Ni1B—N1B—C2B −89.9 (3)
O1W—Ni1A—Ni1B—O1 −177.97 (19) N2—Ni1B—N1B—C2B −3.7 (3)
N1—Ni1A—Ni1B—O1 −99.37 (16) Ni1A—Ni1B—N1B—C2B 66.3 (4)
N1A—Ni1A—Ni1B—O1M 145.2 (2) Ni1A—O1—C1—C2 −123.0 (5)
O1A—Ni1A—Ni1B—O1M −103.37 (16) Ni1B—O1—C1—C2 125.7 (5)
O11A—Ni1A—Ni1B—O1M −30.64 (18) Ni1A—O1—C1—C6 58.6 (5)
O1—Ni1A—Ni1B—O1M 177.62 (18) Ni1B—O1—C1—C6 −52.7 (5)
O1W—Ni1A—Ni1B—O1M −0.34 (18) O1—C1—C2—C3 −173.7 (5)
N1—Ni1A—Ni1B—O1M 78.25 (16) C6—C1—C2—C3 4.7 (8)
N1A—Ni1A—Ni1B—N2 67.03 (19) C1—C2—C3—C4 −0.9 (9)
O1A—Ni1A—Ni1B—N2 178.43 (15) C2—C3—C4—C5 −3.3 (9)
O11A—Ni1A—Ni1B—N2 −108.83 (18) C2—C3—C4—Br 176.7 (5)
O1—Ni1A—Ni1B—N2 99.43 (16) C3—C4—C5—C6 3.2 (8)
O1W—Ni1A—Ni1B—N2 −78.53 (17) Br—C4—C5—C6 −176.7 (4)
N1—Ni1A—Ni1B—N2 0.06 (15) C4—C5—C6—C1 0.9 (8)
N1A—Ni1A—O1—C1 36.4 (3) C4—C5—C6—C7 179.0 (5)
O1A—Ni1A—O1—C1 128.4 (3) O1—C1—C6—C5 173.8 (5)
O11A—Ni1A—O1—C1 −140.7 (3) C2—C1—C6—C5 −4.7 (7)
N1—Ni1A—O1—C1 −47.3 (3) O1—C1—C6—C7 −4.4 (7)
Ni1B—Ni1A—O1—C1 −122.2 (4) C2—C1—C6—C7 177.1 (5)
N1A—Ni1A—O1—Ni1B 158.64 (13) C5—C6—C7—N2 −114.7 (5)
O1A—Ni1A—O1—Ni1B −109.37 (13) C1—C6—C7—N2 63.5 (6)
O11A—Ni1A—O1—Ni1B −18.51 (12) C5—C6—C7—N1 128.4 (5)
N1—Ni1A—O1—Ni1B 74.85 (14) C1—C6—C7—N1 −53.3 (6)
O1B—Ni1B—O1—C1 −129.7 (3) C9—N2—C7—C6 −175.4 (4)
N1B—Ni1B—O1—C1 −37.6 (3) C1B—N2—C7—C6 66.0 (5)
O11A—Ni1B—O1—C1 142.6 (3) Ni1B—N2—C7—C6 −50.5 (5)
O1M—Ni1B—O1—C1 113.9 (7) C9—N2—C7—N1 −49.7 (4)
N2—Ni1B—O1—C1 47.0 (3) C1B—N2—C7—N1 −168.4 (4)
Ni1A—Ni1B—O1—C1 124.1 (3) Ni1B—N2—C7—N1 75.2 (3)
O1B—Ni1B—O1—Ni1A 106.20 (13) C1A—N1—C7—C6 −69.7 (5)
N1B—Ni1B—O1—Ni1A −161.72 (14) C8—N1—C7—C6 169.6 (4)
O11A—Ni1B—O1—Ni1A 18.45 (12) Ni1A—N1—C7—C6 47.1 (5)
O1M—Ni1B—O1—Ni1A −10.2 (8) C1A—N1—C7—N2 166.1 (4)
N2—Ni1B—O1—Ni1A −77.09 (14) C8—N1—C7—N2 45.4 (4)
N1A—Ni1A—O1A—C9A −8.3 (4) Ni1A—N1—C7—N2 −77.1 (4)
O11A—Ni1A—O1A—C9A 171.1 (4) C1A—N1—C8—C9 −145.4 (4)
O1—Ni1A—O1A—C9A −107.6 (4) C7—N1—C8—C9 −23.7 (4)
O1W—Ni1A—O1A—C9A 80.9 (4) Ni1A—N1—C8—C9 101.4 (4)
Ni1B—Ni1A—O1A—C9A −149.6 (3) C7—N2—C9—C8 34.7 (5)
N1B—Ni1B—O1B—C9B 11.5 (4) C1B—N2—C9—C8 155.4 (4)
O11A—Ni1B—O1B—C9B −168.1 (4) Ni1B—N2—C9—C8 −88.7 (4)
O1—Ni1B—O1B—C9B 111.9 (4) N1—C8—C9—N2 −6.9 (5)
O1M—Ni1B—O1B—C9B −77.7 (4) C7—N1—C1A—C2A 82.8 (5)
Ni1A—Ni1B—O1B—C9B 153.2 (4) C8—N1—C1A—C2A −161.8 (4)
O1A—Ni1A—O11A—C1AA −62.1 (4) Ni1A—N1—C1A—C2A −42.2 (4)
O1—Ni1A—O11A—C1AA −157.0 (4) C3A—N1A—C2A—C1A 145.2 (5)
O1W—Ni1A—O11A—C1AA 27.6 (4) Ni1A—N1A—C2A—C1A −27.4 (5)
N1—Ni1A—O11A—C1AA 116.2 (4) N1—C1A—C2A—N1A 48.7 (6)
Ni1B—Ni1A—O11A—C1AA −176.0 (5) C2A—N1A—C3A—C4A −179.3 (5)
O1A—Ni1A—O11A—Ni1B 113.87 (14) Ni1A—N1A—C3A—C4A −7.8 (7)
O1—Ni1A—O11A—Ni1B 18.99 (13) N1A—C3A—C4A—C5A −176.9 (5)
O1W—Ni1A—O11A—Ni1B −156.43 (15) N1A—C3A—C4A—C9A 0.5 (8)
N1—Ni1A—O11A—Ni1B −67.78 (15) C9A—C4A—C5A—C6A 1.0 (7)
O1B—Ni1B—O11A—C1AA 64.0 (4) C3A—C4A—C5A—C6A 178.5 (5)
O1—Ni1B—O11A—C1AA 157.6 (4) C4A—C5A—C6A—C7A 1.1 (8)
O1M—Ni1B—O11A—C1AA −27.4 (4) C4A—C5A—C6A—Br1A −176.8 (4)
N2—Ni1B—O11A—C1AA −113.7 (4) C5A—C6A—C7A—C8A −1.0 (8)
Ni1A—Ni1B—O11A—C1AA 176.4 (5) Br1A—C6A—C7A—C8A 176.9 (4)
O1B—Ni1B—O11A—Ni1A −112.37 (15) C6A—C7A—C8A—C9A −1.3 (8)
O1—Ni1B—O11A—Ni1A −18.76 (13) Ni1A—O1A—C9A—C4A 4.7 (7)
O1M—Ni1B—O11A—Ni1A 156.15 (14) Ni1A—O1A—C9A—C8A −173.8 (3)
N2—Ni1B—O11A—Ni1A 69.94 (15) C5A—C4A—C9A—O1A 178.4 (4)
O1B—Ni1B—O1M—C1M 39.2 (4) C3A—C4A—C9A—O1A 1.1 (8)
N1B—Ni1B—O1M—C1M −52.3 (4) C5A—C4A—C9A—C8A −3.1 (7)
O11A—Ni1B—O1M—C1M 127.5 (4) C3A—C4A—C9A—C8A 179.6 (5)
O1—Ni1B—O1M—C1M 155.8 (6) C7A—C8A—C9A—O1A −178.1 (5)
N2—Ni1B—O1M—C1M −137.1 (4) C7A—C8A—C9A—C4A 3.3 (7)
Ni1A—Ni1B—O1M—C1M 147.2 (4) C9—N2—C1B—C2B 165.2 (4)
N1A—Ni1A—N1—C1A 20.9 (3) C7—N2—C1B—C2B −81.6 (5)
O11A—Ni1A—N1—C1A −158.6 (3) Ni1B—N2—C1B—C2B 41.2 (4)
O1—Ni1A—N1—C1A 120.5 (3) C3B—N1B—C2B—C1B −146.4 (5)
O1W—Ni1A—N1—C1A −68.4 (3) Ni1B—N1B—C2B—C1B 26.8 (5)
Ni1B—Ni1A—N1—C1A 162.6 (3) N2—C1B—C2B—N1B −46.9 (6)
N1A—Ni1A—N1—C7 −102.2 (3) C2B—N1B—C3B—C4B 176.4 (5)
O11A—Ni1A—N1—C7 78.3 (3) Ni1B—N1B—C3B—C4B 4.2 (8)
O1—Ni1A—N1—C7 −2.7 (3) N1B—C3B—C4B—C5B −176.6 (5)
O1W—Ni1A—N1—C7 168.4 (3) N1B—C3B—C4B—C9B 1.8 (8)
Ni1B—Ni1A—N1—C7 39.4 (3) C9B—C4B—C5B—C6B 1.1 (7)
N1A—Ni1A—N1—C8 140.3 (3) C3B—C4B—C5B—C6B 179.5 (5)
O11A—Ni1A—N1—C8 −39.2 (3) C4B—C5B—C6B—C7B −0.9 (8)
O1—Ni1A—N1—C8 −120.1 (3) C4B—C5B—C6B—Br1B −179.4 (4)
O1W—Ni1A—N1—C8 51.0 (3) C5B—C6B—C7B—C8B 0.7 (8)
Ni1B—Ni1A—N1—C8 −78.0 (3) Br1B—C6B—C7B—C8B 179.3 (4)
N1B—Ni1B—N2—C9 −140.4 (3) C6B—C7B—C8B—C9B −0.7 (8)
O11A—Ni1B—N2—C9 39.2 (3) Ni1B—O1B—C9B—C4B −9.8 (7)
O1—Ni1B—N2—C9 119.3 (3) Ni1B—O1B—C9B—C8B 170.7 (3)
O1M—Ni1B—N2—C9 −50.9 (3) C5B—C4B—C9B—O1B 179.5 (5)
Ni1A—Ni1B—N2—C9 78.0 (3) C3B—C4B—C9B—O1B 1.2 (7)
N1B—Ni1B—N2—C7 102.8 (3) C5B—C4B—C9B—C8B −1.0 (7)
O11A—Ni1B—N2—C7 −77.5 (3) C3B—C4B—C9B—C8B −179.3 (5)
O1—Ni1B—N2—C7 2.5 (3) C7B—C8B—C9B—O1B −179.6 (5)
O1M—Ni1B—N2—C7 −167.7 (3) C7B—C8B—C9B—C4B 0.8 (7)
Ni1A—Ni1B—N2—C7 −38.8 (3) Ni1A—O11A—C1AA—O2AA −154.8 (4)
N1B—Ni1B—N2—C1B −20.0 (3) Ni1B—O11A—C1AA—O2AA 30.2 (7)
O11A—Ni1B—N2—C1B 159.6 (3) Ni1A—O11A—C1AA—C2AA 25.4 (7)
O1—Ni1B—N2—C1B −120.3 (3) Ni1B—O11A—C1AA—C2AA −149.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O2Wi 0.80 (2) 2.01 (2) 2.810 (5) 174 (5)
O1W—H1W2···O3M 0.82 (2) 1.97 (3) 2.770 (5) 164 (5)
O2W—H2W1···O1B 0.80 (2) 1.86 (3) 2.631 (5) 160 (6)
O2W—H2W2···O1A 0.83 (2) 1.91 (2) 2.744 (5) 177 (6)
O1M—H1M···O2AA 0.84 1.77 2.602 (5) 174.
O2M—H2M···O2W 0.84 1.89 2.725 (5) 172.
O3M—H3M···O2Mi 0.84 1.96 2.753 (6) 158.

Symmetry codes: (i) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2523).

References

  1. Bruker (2000). SADABS, SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Fondo, M., Garcia-Deibe, A. M., Corbella, M., Ruiz, E., Tercero, J., Sanmartin, J. & Bermejo, M. R. (2005). Inorg. Chem. 44, 5011–5020. [DOI] [PubMed]
  4. Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J. & Bermejo, M. R. (2007). Dalton Trans pp. 414–416. [DOI] [PubMed]
  5. Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006a). Dalton Trans pp. 4260–4270. [DOI] [PubMed]
  6. Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Ruiz, E., Tercero, J. & Sanmartin, J. (2009). Inorg. Chem. 48, 9861–9873. [DOI] [PubMed]
  7. Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Vicente, R., Corbella, M., Bermejo, M. R. & Sanmartin, J. (2006b). Inorg. Chem. 45, 255–262. [DOI] [PubMed]
  8. Khan, A. R., Tesema, Y., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m1264–m1265. [DOI] [PMC free article] [PubMed]
  9. Lu, L.-P., Lu, X.-P. & Zhu, M.-L. (2007). Acta Cryst. C63, m374–m376. [DOI] [PubMed]
  10. Paital, A. R., Ribas, J., Barrios, L. A., Aromi, G. & Ray, D. (2009). Dalton Trans. pp. 256–258. [DOI] [PubMed]
  11. Paital, A. R., Wong, W. T., Aromi, G. & Ray, D. (2007). Inorg. Chem. 46, 5727–5733. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035409/wm2523sup1.cif

e-67-m1381-sup1.cif (37.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035409/wm2523Isup2.hkl

e-67-m1381-Isup2.hkl (427.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES