Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2754. doi: 10.1107/S1600536811038372

(E)-Methyl 3-(4-chloro­phen­yl)-2-{2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy­meth­yl}acrylate

K SakthiMurugesan a, E Govindan a, J Srinivasan b, M Bakthadoss b, A SubbiahPandi a,*
PMCID: PMC3201559  PMID: 22064839

Abstract

In the title compound, C18H16ClNO4, the dihedral angle between the mean planes through the aromatic rings is 83.8 (8)°. The hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached [O—N—C—C torsion angle = −177.96 (13)°]. The mol­ecules are linked into centrosymmetric R 2 2(6) dimers via O—H⋯N hydrogen bonds. The crystal packing is further stabilized by C—H⋯O inter­actions.

Related literature

For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For related structures, see: Wang et al. (2011); Govindan et al. (2011).graphic file with name e-67-o2754-scheme1.jpg

Experimental

Crystal data

  • C18H16ClNO4

  • M r = 345.77

  • Triclinic, Inline graphic

  • a = 8.8860 (4) Å

  • b = 9.3428 (5) Å

  • c = 12.1494 (6) Å

  • α = 72.289 (3)°

  • β = 74.319 (2)°

  • γ = 63.429 (2)°

  • V = 848.63 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.983

  • 22640 measured reflections

  • 6056 independent reflections

  • 4013 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.161

  • S = 1.04

  • 6056 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038372/bt5635sup1.cif

e-67-o2754-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038372/bt5635Isup2.hkl

e-67-o2754-Isup2.hkl (290.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038372/bt5635Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.12 2.8309 (16) 145
C15—H15⋯O3ii 0.93 2.38 3.186 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 83.8 (8)°, it shows that both the rings are almost perpendicular to each other. The methoxybutene group connects the two phenyl rings, results in twisting the rings and placed those rings in perpendicular direction. The oxime group having the C═N forming an E configuration. The atom Cl1 is deviated by 0.060 (1)Å from the least squares plane of the C13—C18 ring. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.014 (1)Å for the C1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O4—C11 [179.3 (1) °] and C12—C9—C10—O4 [-168.9 (1) °]. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O and O–H···N interactions.

Experimental

To a stirred solution of (E)-methyl 2-((2-formylphenoxy) methyl)-3-(4-chlorophenyl)acrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl3- (4-chlorophenyl)-2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)acrylate as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2 - x, -y, 1 - z). The dashed lines indicate the hydrogen bonds.

Crystal data

C18H16ClNO4 Z = 2
Mr = 345.77 F(000) = 360
Triclinic, P1 Dx = 1.353 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8860 (4) Å Cell parameters from 6056 reflections
b = 9.3428 (5) Å θ = 2.5–32.5°
c = 12.1494 (6) Å µ = 0.25 mm1
α = 72.289 (3)° T = 293 K
β = 74.319 (2)° Block, white crystalline
γ = 63.429 (2)° 0.25 × 0.22 × 0.19 mm
V = 848.63 (7) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 6056 independent reflections
Radiation source: fine-focus sealed tube 4013 reflections with I > 2σ(I)
graphite Rint = 0.023
ω and φ scans θmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.978, Tmax = 0.983 k = −13→14
22640 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.1584P] where P = (Fo2 + 2Fc2)/3
6056 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.76040 (18) 0.46783 (19) 0.49605 (13) 0.0517 (3)
H3 0.8399 0.4114 0.4401 0.062*
C4 0.7342 (2) 0.6270 (2) 0.48827 (14) 0.0592 (4)
H4 0.7965 0.6772 0.4281 0.071*
C5 0.6153 (2) 0.71133 (19) 0.57003 (15) 0.0567 (4)
H5 0.5972 0.8191 0.5646 0.068*
C6 0.52179 (19) 0.63806 (17) 0.66070 (13) 0.0487 (3)
H6 0.4415 0.6963 0.7155 0.058*
C7 0.54922 (15) 0.47730 (15) 0.66875 (11) 0.0384 (3)
C2 0.67024 (15) 0.38967 (16) 0.58609 (11) 0.0396 (3)
C1 0.69450 (17) 0.22183 (17) 0.59516 (12) 0.0457 (3)
H1 0.6076 0.1872 0.6359 0.055*
C9 0.25890 (16) 0.35977 (17) 0.91804 (11) 0.0423 (3)
C12 0.31776 (17) 0.23354 (17) 1.00615 (12) 0.0456 (3)
H12 0.2466 0.1781 1.0421 0.055*
C13 0.47403 (17) 0.16776 (16) 1.05564 (12) 0.0441 (3)
C14 0.62373 (18) 0.18941 (19) 0.99839 (13) 0.0521 (3)
H14 0.6292 0.2485 0.9215 0.062*
C15 0.7634 (2) 0.1246 (2) 1.05398 (15) 0.0576 (4)
H15 0.8618 0.1414 1.0152 0.069*
C16 0.7569 (2) 0.03523 (19) 1.16672 (14) 0.0548 (3)
C17 0.6130 (2) 0.0072 (2) 1.22484 (15) 0.0609 (4)
H17 0.6102 −0.0555 1.3007 0.073*
C18 0.4742 (2) 0.07297 (19) 1.16918 (14) 0.0548 (4)
H18 0.3772 0.0539 1.2083 0.066*
C11 −0.1064 (2) 0.5320 (3) 0.76182 (19) 0.0834 (6)
H11A −0.0975 0.4408 0.7358 0.125*
H11B −0.1339 0.6279 0.6999 0.125*
H11C −0.1945 0.5510 0.8285 0.125*
C10 0.09091 (18) 0.38980 (19) 0.89357 (13) 0.0497 (3)
N1 0.83143 (16) 0.12225 (15) 0.54872 (12) 0.0522 (3)
O1 0.82593 (17) −0.03007 (15) 0.56443 (13) 0.0761 (4)
H1A 0.9160 −0.0912 0.5328 0.114*
O2 0.46629 (12) 0.39236 (12) 0.75426 (8) 0.0464 (2)
O3 −0.00369 (16) 0.32873 (18) 0.95683 (13) 0.0781 (4)
O4 0.05387 (15) 0.49645 (18) 0.79367 (11) 0.0693 (3)
Cl1 0.93049 (7) −0.04275 (8) 1.23850 (5) 0.0881 (2)
C8 0.34517 (17) 0.47105 (16) 0.84520 (12) 0.0437 (3)
H8A 0.2621 0.5754 0.8114 0.052*
H8B 0.4027 0.4906 0.8930 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0464 (7) 0.0539 (8) 0.0416 (7) −0.0187 (6) 0.0038 (5) −0.0038 (6)
C4 0.0572 (8) 0.0555 (9) 0.0522 (8) −0.0278 (7) −0.0007 (6) 0.0071 (7)
C5 0.0596 (9) 0.0437 (7) 0.0613 (9) −0.0233 (7) −0.0090 (7) −0.0001 (7)
C6 0.0489 (7) 0.0441 (7) 0.0495 (7) −0.0176 (6) −0.0034 (6) −0.0102 (6)
C7 0.0359 (5) 0.0420 (6) 0.0344 (6) −0.0160 (5) −0.0038 (4) −0.0048 (5)
C2 0.0347 (5) 0.0439 (6) 0.0351 (6) −0.0142 (5) −0.0031 (4) −0.0055 (5)
C1 0.0420 (6) 0.0501 (7) 0.0413 (7) −0.0204 (6) 0.0056 (5) −0.0121 (5)
C9 0.0374 (6) 0.0465 (7) 0.0415 (6) −0.0168 (5) 0.0063 (5) −0.0182 (5)
C12 0.0432 (6) 0.0468 (7) 0.0458 (7) −0.0213 (6) 0.0054 (5) −0.0140 (6)
C13 0.0448 (6) 0.0402 (6) 0.0443 (7) −0.0177 (5) 0.0023 (5) −0.0116 (5)
C14 0.0469 (7) 0.0557 (8) 0.0457 (7) −0.0224 (6) 0.0011 (6) −0.0046 (6)
C15 0.0478 (8) 0.0616 (9) 0.0604 (9) −0.0251 (7) −0.0023 (6) −0.0090 (7)
C16 0.0557 (8) 0.0506 (8) 0.0561 (9) −0.0166 (7) −0.0114 (6) −0.0133 (7)
C17 0.0661 (10) 0.0559 (9) 0.0491 (8) −0.0220 (8) −0.0062 (7) −0.0015 (7)
C18 0.0549 (8) 0.0492 (8) 0.0524 (8) −0.0245 (7) 0.0010 (6) −0.0026 (6)
C11 0.0504 (9) 0.1214 (18) 0.0703 (12) −0.0190 (10) −0.0147 (8) −0.0288 (12)
C10 0.0424 (7) 0.0541 (8) 0.0506 (8) −0.0168 (6) 0.0015 (5) −0.0199 (6)
N1 0.0478 (6) 0.0478 (6) 0.0575 (7) −0.0212 (5) 0.0089 (5) −0.0180 (5)
O1 0.0708 (8) 0.0564 (7) 0.0973 (10) −0.0341 (6) 0.0298 (7) −0.0353 (7)
O2 0.0487 (5) 0.0448 (5) 0.0412 (5) −0.0218 (4) 0.0115 (4) −0.0145 (4)
O3 0.0571 (7) 0.0865 (9) 0.0933 (10) −0.0428 (7) −0.0108 (6) −0.0013 (7)
O4 0.0495 (6) 0.1007 (10) 0.0502 (6) −0.0280 (6) −0.0061 (5) −0.0105 (6)
Cl1 0.0749 (3) 0.1059 (4) 0.0811 (4) −0.0278 (3) −0.0320 (3) −0.0120 (3)
C8 0.0416 (6) 0.0430 (6) 0.0425 (7) −0.0160 (5) 0.0050 (5) −0.0154 (5)

Geometric parameters (Å, °)

C3—C4 1.375 (2) C14—C15 1.377 (2)
C3—C2 1.3911 (18) C14—H14 0.9300
C3—H3 0.9300 C15—C16 1.372 (2)
C4—C5 1.374 (2) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.379 (2)
C5—C6 1.389 (2) C16—Cl1 1.7336 (17)
C5—H5 0.9300 C17—C18 1.370 (2)
C6—C7 1.3859 (19) C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—O2 1.3637 (14) C11—O4 1.444 (2)
C7—C2 1.4015 (17) C11—H11A 0.9600
C2—C1 1.4570 (19) C11—H11B 0.9600
C1—N1 1.2649 (17) C11—H11C 0.9600
C1—H1 0.9300 C10—O3 1.1982 (19)
C9—C12 1.339 (2) C10—O4 1.327 (2)
C9—C10 1.487 (2) N1—O1 1.3985 (16)
C9—C8 1.4961 (18) O1—H1A 0.8200
C12—C13 1.460 (2) O2—C8 1.4364 (14)
C12—H12 0.9300 C8—H8A 0.9700
C13—C18 1.394 (2) C8—H8B 0.9700
C13—C14 1.3960 (19)
C4—C3—C2 121.24 (13) C13—C14—H14 119.5
C4—C3—H3 119.4 C16—C15—C14 119.71 (14)
C2—C3—H3 119.4 C16—C15—H15 120.1
C5—C4—C3 119.48 (13) C14—C15—H15 120.1
C5—C4—H4 120.3 C15—C16—C17 120.90 (15)
C3—C4—H4 120.3 C15—C16—Cl1 120.00 (13)
C4—C5—C6 121.02 (14) C17—C16—Cl1 119.11 (13)
C4—C5—H5 119.5 C18—C17—C16 119.01 (15)
C6—C5—H5 119.5 C18—C17—H17 120.5
C7—C6—C5 119.37 (13) C16—C17—H17 120.5
C7—C6—H6 120.3 C17—C18—C13 121.93 (14)
C5—C6—H6 120.3 C17—C18—H18 119.0
O2—C7—C6 124.59 (12) C13—C18—H18 119.0
O2—C7—C2 115.15 (11) O4—C11—H11A 109.5
C6—C7—C2 120.25 (12) O4—C11—H11B 109.5
C3—C2—C7 118.63 (12) H11A—C11—H11B 109.5
C3—C2—C1 122.13 (12) O4—C11—H11C 109.5
C7—C2—C1 119.22 (11) H11A—C11—H11C 109.5
N1—C1—C2 121.29 (12) H11B—C11—H11C 109.5
N1—C1—H1 119.4 O3—C10—O4 122.92 (15)
C2—C1—H1 119.4 O3—C10—C9 124.79 (15)
C12—C9—C10 115.36 (12) O4—C10—C9 112.26 (13)
C12—C9—C8 126.12 (13) C1—N1—O1 112.01 (12)
C10—C9—C8 118.52 (13) N1—O1—H1A 109.5
C9—C12—C13 131.27 (12) C7—O2—C8 118.70 (10)
C9—C12—H12 114.4 C10—O4—C11 116.24 (15)
C13—C12—H12 114.4 O2—C8—C9 107.58 (10)
C18—C13—C14 117.39 (14) O2—C8—H8A 110.2
C18—C13—C12 116.98 (12) C9—C8—H8A 110.2
C14—C13—C12 125.62 (13) O2—C8—H8B 110.2
C15—C14—C13 121.01 (14) C9—C8—H8B 110.2
C15—C14—H14 119.5 H8A—C8—H8B 108.5
C2—C3—C4—C5 −0.8 (3) C14—C15—C16—C17 1.0 (3)
C3—C4—C5—C6 0.3 (3) C14—C15—C16—Cl1 −178.50 (13)
C4—C5—C6—C7 0.1 (2) C15—C16—C17—C18 −1.4 (3)
C5—C6—C7—O2 179.42 (13) Cl1—C16—C17—C18 178.09 (13)
C5—C6—C7—C2 0.0 (2) C16—C17—C18—C13 −0.2 (3)
C4—C3—C2—C7 0.9 (2) C14—C13—C18—C17 2.0 (2)
C4—C3—C2—C1 179.24 (14) C12—C13—C18—C17 −179.02 (14)
O2—C7—C2—C3 −179.96 (12) C12—C9—C10—O3 12.6 (2)
C6—C7—C2—C3 −0.48 (19) C8—C9—C10—O3 −166.71 (15)
O2—C7—C2—C1 1.66 (17) C12—C9—C10—O4 −168.91 (13)
C6—C7—C2—C1 −178.86 (13) C8—C9—C10—O4 11.76 (17)
C3—C2—C1—N1 23.8 (2) C2—C1—N1—O1 −177.96 (13)
C7—C2—C1—N1 −157.87 (14) C6—C7—O2—C8 −1.97 (19)
C10—C9—C12—C13 −179.66 (13) C2—C7—O2—C8 177.48 (11)
C8—C9—C12—C13 −0.4 (2) O3—C10—O4—C11 −2.2 (2)
C9—C12—C13—C18 158.99 (15) C9—C10—O4—C11 179.32 (14)
C9—C12—C13—C14 −22.1 (2) C7—O2—C8—C9 173.33 (11)
C18—C13—C14—C15 −2.4 (2) C12—C9—C8—O2 83.72 (16)
C12—C13—C14—C15 178.71 (14) C10—C9—C8—O2 −97.03 (13)
C13—C14—C15—C16 1.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1i 0.82 2.12 2.8309 (16) 145.
C15—H15···O3ii 0.93 2.38 3.186 (2) 145.

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5635).

References

  1. Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [DOI] [PubMed]
  2. Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [DOI] [PubMed]
  3. Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [DOI] [PubMed]
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  5. Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  6. Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [DOI] [PMC free article] [PubMed]
  7. Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [DOI] [PubMed]
  8. Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038372/bt5635sup1.cif

e-67-o2754-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038372/bt5635Isup2.hkl

e-67-o2754-Isup2.hkl (290.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038372/bt5635Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES