Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Oct 11;12(19):7455–7465. doi: 10.1093/nar/12.19.7455

Molecular cloning and the complete nucleotide sequence of cDNA to mRNA for S-100 protein of rat brain.

R Kuwano, H Usui, T Maeda, T Fukui, N Yamanari, E Ohtsuka, M Ikehara, Y Takahashi
PMCID: PMC320174  PMID: 6093041

Abstract

The complete nucleotide sequence of mRNA for beta-subunit of rat brain S-100 protein was determined from recombinant cDNA clones. The sequence was composed of 1488 bp which included the 276 bp of the complete coding region, the 120 bp of the 5'-noncoding region and the 1092 bp of the 3'-noncoding region containing two polyadenylation signals. In addition, the poly(A) tail was also found. The amino acid sequence deduced from the nucleotide sequence was homologous to the amino acid sequence of bovine S-100 beta subunit except 4 residues showing species differences. From the viewpoint of evolutionary implications, the homology between the nucleotide sequence of S-100 and those of rat intestinal Ca-binding protein (ICaBP) and calmodulin (CaM) was examined. A dot-blot hybridization of poly(A) RNA from the developing rat brains using a labeled cDNA showed a rapid increase in S-100 mRNA at 10-20 postnatal days. The presence of S-100 mRNA in C-6 glioma cells is also described.

Full text

PDF
7455

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Currier T. C., Nester E. W. Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem. 1976 Dec;76(2):431–441. doi: 10.1016/0003-2697(76)90338-9. [DOI] [PubMed] [Google Scholar]
  3. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  4. Desplan C., Heidmann O., Lillie J. W., Auffray C., Thomasset M. Sequence of rat intestinal vitamin D-dependent calcium-binding protein derived from a cDNA clone. Evolutionary implications. J Biol Chem. 1983 Nov 25;258(22):13502–13505. [PubMed] [Google Scholar]
  5. Ghandour M. S., Langley O. K., Labourdette G., Vincendon G., Gombos G. Specific and artefactual cellular localizations of S 100 protein: an astrocyte marker in rat cerebellum. Dev Neurosci. 1981;4(1):66–78. doi: 10.1159/000112742. [DOI] [PubMed] [Google Scholar]
  6. Hanahan D., Meselson M. Plasmid screening at high colony density. Gene. 1980 Jun;10(1):63–67. doi: 10.1016/0378-1119(80)90144-4. [DOI] [PubMed] [Google Scholar]
  7. Hunkapiller M. W., Hood L. E. Protein sequence analysis: automated microsequencing. Science. 1983 Feb 11;219(4585):650–659. doi: 10.1126/science.6687410. [DOI] [PubMed] [Google Scholar]
  8. Isobe T., Ishioka N., Masuda T., Takahashi Y., Ganno S., Okuyama T. A rapid separation of S100 subunits by high performance liquid chromatography: the subunit compositions of S100 proteins. Biochem Int. 1983 Mar;6(3):419–426. [PubMed] [Google Scholar]
  9. Isobe T., Ishioka N., Okuyama T. Structural relation of two S-100 proteins in bovine brain; subunit composition of S-100a protein. Eur J Biochem. 1981 Apr;115(3):469–474. doi: 10.1111/j.1432-1033.1981.tb06225.x. [DOI] [PubMed] [Google Scholar]
  10. Isobe T., Nakajima T., Okuyama T. Reinvestigation of extremely acidic proteins in bovine brain. Biochim Biophys Acta. 1977 Sep 27;494(1):222–232. doi: 10.1016/0005-2795(77)90150-7. [DOI] [PubMed] [Google Scholar]
  11. Isobe T., Tsugita A., Okuyama T. The amino acid sequence and the subunit structure of bovine brain S-100 protein (PAP I-b). J Neurochem. 1978 Apr;30(4):921–923. doi: 10.1111/j.1471-4159.1978.tb10805.x. [DOI] [PubMed] [Google Scholar]
  12. Ito H., Ike Y., Ikuta S., Itakura K. Solid phase synthesis of polynucleotides. VI. Further studies on polystyrene copolymers for the solid support. Nucleic Acids Res. 1982 Mar 11;10(5):1755–1769. doi: 10.1093/nar/10.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh N., Obata K., Yanaihara N., Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature. 1983 Aug 11;304(5926):547–549. doi: 10.1038/304547a0. [DOI] [PubMed] [Google Scholar]
  14. Lagacé L., Chandra T., Woo S. L., Means A. R. Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA. J Biol Chem. 1983 Feb 10;258(3):1684–1688. [PubMed] [Google Scholar]
  15. Land H., Grez M., Hauser H., Lindenmaier W., Schütz G. 5'-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency. Nucleic Acids Res. 1981 May 25;9(10):2251–2266. doi: 10.1093/nar/9.10.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manabe T., Jitzukawa S., Ishioka N., Isobe T., Okuyama T. Separation of extremely acidic proteins, S-100 proteins and calmodulin, in some bovine tissues and mammalian brains by two-dimensional electrophoresis in the absence of denaturing agents. J Biochem. 1982 Mar;91(3):1009–1015. doi: 10.1093/oxfordjournals.jbchem.a133750. [DOI] [PubMed] [Google Scholar]
  17. Masuda T., Sakimura K., Yoshida Y., Kuwano R., Isobe T., Okuyama T., Takahashi Y. Developmental changes in the translatable mRNA for beta subunit of S-100 protein in rat brain. Biochim Biophys Acta. 1983 Aug 2;740(3):249–254. doi: 10.1016/0167-4781(83)90133-1. [DOI] [PubMed] [Google Scholar]
  18. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  19. Moore B. W. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965 Jun 9;19(6):739–744. doi: 10.1016/0006-291x(65)90320-7. [DOI] [PubMed] [Google Scholar]
  20. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  21. Putkey J. A., Ts'ui K. F., Tanaka T., Lagacé L., Stein J. P., Lai E. C., Means A. R. Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem. 1983 Oct 10;258(19):11864–11870. [PubMed] [Google Scholar]
  22. Sakimura K., Yoshida Y., Nabeshima Y., Takahashi Y. Biosynthesis of the brain-specific 14-3-2 protein in a cell-free system from wheat germ extract directed with poly(A)-containing RNA from rat brain. J Neurochem. 1980 Mar;34(3):687–693. doi: 10.1111/j.1471-4159.1980.tb11198.x. [DOI] [PubMed] [Google Scholar]
  23. Scott J., Selby M., Urdea M., Quiroga M., Bell G. I., Rutter W. J. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature. 1983 Apr 7;302(5908):538–540. doi: 10.1038/302538a0. [DOI] [PubMed] [Google Scholar]
  24. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallace R. B., Johnson M. J., Hirose T., Miyake T., Kawashima E. H., Itakura K. The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit beta-globin DNA. Nucleic Acids Res. 1981 Feb 25;9(4):879–894. doi: 10.1093/nar/9.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoo O. J., Powell C. T., Agarwal K. L. Molecular cloning and nucleotide sequence of full-length of cDNA coding for porcine gastrin. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1049–1053. doi: 10.1073/pnas.79.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yoshida Y., Sakimura K., Masuda T., Kushiya E., Takahashi Y. Changes in levels of translatable mRNA for neuron-specific enolase and non-neuronal enolase during development of rat brain and liver. J Biochem. 1983 Nov;94(5):1443–1450. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES