Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2011 Oct 25.
Published in final edited form as: Pharmacogenet Genomics. 2010 Apr;20(4):277–281. doi: 10.1097/FPC.0b013e3283349e84

Cytochrome P450 2C9-CYP2C9

Derek Van Booven a, Sharon Marsh b, Howard McLeod c, Michelle Whirl Carrillo d, Katrin Sangkuhl d, Teri E Klein d, Russ B Altman d,e
PMCID: PMC3201766  NIHMSID: NIHMS329072  PMID: 20150829

Overview

http://www.pharmgkb.org/search/annotatedGene/cyp2c9/index.jsp CYP2C9 is a phase I drug-metabolizing cytochrome P450 (CYP450) enzyme isoform that plays a major role in the oxidation of both xenobiotic and endogenous compounds. Gray et al. [1] identified CYP2C9 as one of several CYP2C genes clustered in a 500 kb region on chromosome 10q24. The cluster comprises four genes arranged in the order CYP2C8-CYP2C9-CYP2C19-CYP2C18 [1]. Several studies identified a single nucleotide polymorphism (SNP) linkage between the CYP2C8 and CYP2C9 genes [2-4]. CYP2C9 is primarily expressed in the liver, and the expression level is reported to be the second highest among CYP isoforms [5]. Only the CYP enzyme CYP3A4 is quantitatively more highly expressed in the human liver [6].

Substrates

It has been estimated that CYP2C9 is responsible for the metabolic clearance of up to 15-20% of all drugs undergoing phase I metabolism [7,8]. Table 1 is a partial list showing examples of the broad substrate spectrum of drugs that are metabolized by CYP2C9, including relevant references. Further information is also available at http://medicine.iupui.edu/clinpharm/ddis/table.asp and in the following reviews [6,9].

Table 1. Examples of substrates that are metabolized by CYP2C9.

Drug name Class References
Irbesartan Angiotensin II blocker [10,11]
Losartan Angiotensin II blocker [12]
Phenytoin Antiepileptic [13]
Cyclophosphamide Alkylating agent [14,15]
Tamoxifen Anti-estrogen [16]
Fluvastatin Statin [17]
Celecoxib NSAID [18,19]
Diclofenac NSAID [20,21]
Ibuprofen NSAID [22]
Lornoxicam NSAID [23,24]
Meloxicam NSAID [25]
Naproxen NSAID [26,27]
Glibenclamide Sulfonylurea [28]
Glimepiride Sulfonylurea [29,30]
Glipizide Sulfonylurea [31,32]
Tolbutamide Sulfonylurea [33]
Warfarin Anticoagulant [34-37]

Inducer and inhibitors

CYP2C9 is induced by rifampicin [38]. Treatment with rifampicin has been shown consistently to increase the clearance of drugs eliminated by CYP2C9. The clearance of losartan, phenytoin, tolbutamide, and S-warfarin is approximately doubled in healthy volunteers or patients treated with rifampicin [9,39].

CYP2C9 is inhibited by amiodarone, fluconazole, and sulphaphenazole among other drugs [9]. Dangerous drug- drug interaction can arise when an inhibitor such as one of these is added to a therapeutic regime that includes drugs with a low therapeutic index, such as S-warfarin, tolbutamine, and phenytoin [40-42]. For example, there are numerous studies documenting potentiation of the anticoagulant effect of warfarin in patients coadminis- tered with amiodarone [43-45].

Structure

CYP2C9 is the enzyme responsible for the metabolism of the S-isomer of warfarin that is principally responsible for the anticoagulant effect of the drug. The crystal structure of human CYP2C9 was described by Williams et al. [46], for both CYP2C9 in complex with warfarin and unliganded CYP2C9 (Protein Data Bank ID: 1OG2 and 1OG5, respectively). The structure showed unanticipated interactions between CYP2C9 and warfarin, revealing a new binding pocket, suggesting that CYP2C9 may simultaneously accommodate multiple ligands during its biological function [46]. Structural analysis suggested that CYP2C9 may undergo an allosteric change when binding warfarin [46]. An X-ray crystal structure of CYP2C9, in complex with the NSAID flurbiprofen, has also been described (Protein Data Bank ID: 1R9O) [47].

Genetic phenotypes and adverse drug reactions

The gene coding for the CYP2C9 enzyme is highly poly- morphic, including functional variants of major pharma- cogenetic importance. Changes in metabolic activity caused by genetic variants in CYP2C9 play a major role in pathogenesis caused by adverse drug reactions. Patients with low enzyme activity are at risk of adverse drug reaction, especially for CYP2C9 substrates with a narrow therapeutic window, such as S-warfarin, pheny- toin, glipizide, and tolbutamide [48].

A large body of literature investigates two common non- synonymous variants within CYP2C9 (R144C, rs1799853 and I359L, rs1057910), leading to poor metabolism phenotypes. Both variants have significantly lower frequencies in African and Asian populations compared with Caucasian populations [8,49], see frequency tables (Tables 2 and 3) below.

Table 2. Frequency of the 144C allele in different populations.

Population No. of subjects Allele frequency
of 144C
References
Chinese (Shanghai) 394 0.001 [50]
Korean 574 0.000 [51]
Japanese 147 0.000 [52]
Japanese 140 0.000 [53]
Japanese 64 0.000 [54]
Vietnamese (Kinh) 157 0.000 [55]
Iranian 200 0.128 [56]
Turkish 499 0.106 [57]
Ashekenazi Jew 100 0.085 [52]
Yemenite Jew 99 0.051 [52]
Moroccan Jew 100 0.095 [52]
Libyan Jew 89 0.152 [52]
Egyptian 247 0.120 [58]
Ethiopian 150 0.040 [59]
African-American 66 0.000 [54]
US-Caucasians 115 0.143 [54]
Russian 290 0.105 [60]
Croatian 200 0.165 [61]
French-Caucasians 151 0.150 [50]
German 118 0.140 [62]
Swedish 430 0.107 [63]
Spanish 157 0.143 [64]
Italian 157 0.110 [59]

Table 3. Frequency of the 359Leu allele in different populations.

Population No. of
subjects
Allele frequency
of 359Leu
References
Chinese (Shanghai) 394 0.036 [50]
Korean 574 0.011 [51]
Japanese 147 0.007 [52]
Japanese 140 0.054 [53]
Japanese 64 0.016 [54]
Vietnamese (Kinh) 157 0.022 [55]
Iranian 200 0.000 [56]
Turkish 499 0.100 [57]
Ashekenazi Jew 100 0.080 [52]
Yemenite Jew 99 0.081 [52]
Moroccan Jew 100 0.115 [52]
Libyan Jew 89 0.174 [52]
Egyptian 247 0.060 [58]
Ethiopian 150 0.020 [59]
African-American 66 0.008 [54]
US-Caucasian 115 0.109 [54]
Russian 290 0.067 [60]
Croatian 200 0.095 [61]
French-Caucasians 151 0.080 [50]
German 118 0.050 [62]
Swedish 430 0.074 [63]
Spanish 157 0.162 [64]
Italian 157 0.090 [59]

Individuals with these variants are at risk of prolonged bleeding time and increased incidence of severe bleeding in warfarin therapy [65], higher possibility of low blood sugar levels during glipizide and tolbutamide therapy [31], and more frequent symptoms of overdose in phenytoin therapy [66].

Patients with the poor metabolizer *2 (identified by R144C) and *3 (identified by I359L) haplotypes require lower doses of warfarin to achieve a similar anticoagulant as patients with at least one *1 (wild-type) haplotype [65,67]. However, it is now known that CYP2C9 genotype accounts for only part of the variability in warfarin sensitivity [68,69], because VKORC1 genotype, age, and weight are also key factors in predicting the therapeutic dose for warfarin [54].

CYP2C9 is responsible for about 90% of phenytoin metabolism, and the CYP2C9*2 and *3 haplotypes decrease the metabolism of phenytoin [70-72].

Besides the two variants mentioned above, a large number of SNPs have been described in the regulatory and coding regions of the CYP2C9 gene (http://www.cypalleles.ki.se/cyp2c9.htm). Some of the polymorphisms are associated with reduced enzyme activity compared with wild-type in in-vitro experiments; only a few enzyme experiments have been done in vivo. CYP2C9*6 (818delA, rs9332131) is a rare (1 allele in 158 African-Americans, 0 in Caucasians) null allele with lack of activity because of a splicing muta- tion that causes a frameshift resulting in a truncated protein [73]. The variant I359T (CYP2C*4) is also a rare (0.5% in African-Americans, 6% in Caucasians) polymorph- ism [53,74]. Both have been detected in patients who had adverse reactions to phenytoin [73,75]. CYP2C9*5 (D360E, rs28371686), *6, *8 (R150H, rs7900194), and *11 (R335W, rs28371685) variants were associated with decreased phenytoin metabolism in a black population [76].

The CYP2C9 promoter contains important regulatory elements: two HNF4α sites, a nuclear receptor pregnane X receptor binding site, a constitutive androstane receptor/PXR site, and a glucocorticoid responsive ele- ment [59,77,78]. There have been multiple polymorph- isms detected in the 5′ untranslated region of CYP2C9 but these have not yet been shown to contribute to response to warfarin [79,80] or phenytoin [72] in vivo, beyond those which seem to be in linkage disequilibrium with known exonic variants [79,81,82]. A recent study investigating 22 known and 9 novel promoter SNPs with an in-vitro promoter activity assay suggests that genetic variation within CYP2C9 regulatory sequences is likelyto contribute to differences in CYP2C9 phenotype, both within and among different populations, independent from known exonic variants [83].

Important variants

CYP2C9: R144C; 144Arg > Cys; 430C > T (rs1799853)

This variant in exon 3 is the defining allele for the CYP2C9*2 haplotype. Other variant positions delineate between haplotypes in the *2 series (see http://www.imm.ki.se/CYPalleles for defining website), but a T allele at this position defines a CYP2C9*2 haplotype. For further information about the CYP2C9*2 haplotype (see http://www.pharmgkb.org/search/annotatedGene/cyp2c9/haplotype.jsp).

According to most in-vitro data, substrate affinity is not affected substantially by the *2 haplotype, but the maxi- mum rate of metabolism (Vmax) is reduced to approximately 50% of that for CYP2C9*1 (wild-type) [8,84-86].

Individuals homozygous for this variant have been found to have much lower clearance values for S-acenocoumarol, S-warfarin, phenytoin, tolbutamide, ibuprofen, nategli- nide, fluvastatin, phenprocoumon, when compared to individuals homozygous for R (Arg) [84,87]. Homozy- gotes for this variant also have a lower clearance as com- pared with individuals homozygous for R (Arg) (68-90%) for the following drugs: phenytoin, tolbutamide, ibupro- fen, nateglinide, fluvastatin, phenprocoumon [84].

The R144C variant has been genotyped in various popu- lations (Table 2). The variant exists in about 10-20% of the Caucasian population, and is rare in the tested Asian and African-American populations [49,88].

CYP2C9: I359L; 359Ile > Leu; 1075A > C (rs1057910)

The variant at this position is the defining allele for the CYP2C9*3 haplotype. Other variant positions delineate between haplotypes in the *3 series (see http://www.imm.ki.se/CYPalleles for defining website), but a C allele at this position defines a CYP2C9*3 haplotype. For further infor- mation about the CYP2C9*3 haplotype see http://www.pharmgkb.org/search/annotatedGene/cyp2c9/haplotype.jsp

The catalytic activity of the *3 haplotype is significantly reduced for most CYP2C9 substrates because of both an increase in Km and a reduction in Vmax [8,84,85].

Leu/Leu homozygotes have lower metabolic activity for CYP2C9 substrates in general, including tolbutamide and phenytoin [89]. However, much of the supporting data are from in-vitro studies and homozygous individuals are rare [90]. In other studies, it has been found that heterozygotes have about half the clearance as wild-type, for the following drugs: S-warfarin, tolbutamide, fluvas- tatin, glimepiride, tenoxicam, candesartan, celecoxib, phenytoin [84].

The clearance of S-ibuprofen is reduced in CYP2C9*3/*3 homozygotes compared with wild-type homogozygotes [3]. In in-vivo studies, the CYP2C9*3 haplotype in hetero- zygotes has been associated with a lower clearance and longer half-life of flurbiprofen [91]. The I359L variant has been genotyped in various populations (Table 3). Supplemental digital content for the CYP2C9 gene (PA126) and VIP is available at http://www.pharmgkb.org/search/annotatedGene/cyp2c9/.

Acknowledgement

PharmGKB is supported by the NIH/NIGMS Pharmaco- genetics Research Network (PGRN; UO1GM61374).

References

  • 1.Gray IC, Nobile C, Muresu R, Ford S, Spurr NK. A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics. 1995;28:328–332. doi: 10.1006/geno.1995.1149. [DOI] [PubMed] [Google Scholar]
  • 2.Yasar U, Lundgren S, Eliasson E, Bennet A, Wiman B, de Faire U, Rane A. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun. 2002;299:25–28. doi: 10.1016/s0006-291x(02)02592-5. [DOI] [PubMed] [Google Scholar]
  • 3.Garcia-Martin E, Martinez C, Tabares B, Frias J, Agundez JA. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther. 2004;76:119–127. doi: 10.1016/j.clpt.2004.04.006. [DOI] [PubMed] [Google Scholar]
  • 4.Speed WC, Kang SP, Tuck DP, Harris LN, Kidd KK. Global variation in CYP2C8-CYP2C9 functional haplotypes. Pharmacogenomics J. 2009;9:283–290. doi: 10.1038/tpj.2009.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Soars MG, Gelboin HV, Krausz KW, Riley RJ. A comparison of relative abundance, activity factor and inhibitory monoclonal antibody approaches in the characterization of human CYP enzymology. Br J Clin Pharmacol. 2003;55:175–181. doi: 10.1046/j.1365-2125.2003.01721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol. 2005;45:477–494. doi: 10.1146/annurev.pharmtox.45.120403.095821. [DOI] [PubMed] [Google Scholar]
  • 7.Ali ZK, Kim RJ, Ysla FM. CYP2C9 polymorphisms: considerations in NSAID therapy. Curr Opin Drug Discov Devel. 2009;12:108–114. [PubMed] [Google Scholar]
  • 8.Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12:251–263. doi: 10.1097/00008571-200204000-00010. [DOI] [PubMed] [Google Scholar]
  • 9.Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45:525–538. doi: 10.1046/j.1365-2125.1998.00721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Chen G, Jiang S, Mao G, Zhang S, Hong X, Tang G, et al. CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients. Methods Find Exp Clin Pharmacol. 2006;28:19–24. doi: 10.1358/mf.2006.28.1.962773. [DOI] [PubMed] [Google Scholar]
  • 11.Werner D, Werner U, Meybaum A, Schmidt B, Umbreen S, Grosch A, et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47:323–332. doi: 10.2165/00003088-200847050-00003. [DOI] [PubMed] [Google Scholar]
  • 12.McCrea JB, Cribb A, Rushmore T, Osborne B, Gillen L, Lo MW, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther. 1999;65:348–352. doi: 10.1016/S0009-9236(99)70114-1. [DOI] [PubMed] [Google Scholar]
  • 13.Veronese ME, Mackenzie PI, Doecke CJ, McManus ME, Miners JO, Birkett DJ. Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun. 1991;175:1112–1118. doi: 10.1016/0006-291x(91)91680-b. [DOI] [PubMed] [Google Scholar]
  • 14.Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxy-cyclophosphamide. Pharmacogenet Genomics. 2008;18:515–523. doi: 10.1097/FPC.0b013e3282fc9766. [DOI] [PubMed] [Google Scholar]
  • 15.Griskevicius L, Yasar U, Sandberg M, Hidestrand M, Eliasson E, Tybring G, et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol. 2003;59:103–109. doi: 10.1007/s00228-003-0590-6. [DOI] [PubMed] [Google Scholar]
  • 16.Coller JK, Krebsfaenger N, Klein K, Endrizzi K, Wolbold R, Lang T, et al. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol. 2002;54:157–167. doi: 10.1046/j.1365-2125.2002.01614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, Robinson WT. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitorfluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999;27:410–416. [PubMed] [Google Scholar]
  • 18.Chan AT, Zauber AG, Hsu M, Breazna A, Hunter DJ, Rosenstein RB, et al. Cytochrome P450 2C9 variants influence response to celecoxib for prevention of colorectal adenoma. Gastroenterology. 2009;e2121;136:2127–2136. doi: 10.1053/j.gastro.2009.02.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Pilotto A, Seripa D, Franceschi M, Scarcelli C, Colaizzo D, Grandone E, et al. Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology. 2007;133:465–471. doi: 10.1053/j.gastro.2007.05.025. [DOI] [PubMed] [Google Scholar]
  • 20.Leemann T, Transon C, Dayer P. Cytochrome P450TB (CYP2C): a major monooxygenase catalyzing diclofenac 4′-hydroxylation in human liver. Life Sci. 1993;52:29–34. doi: 10.1016/0024-3205(93)90285-b. [DOI] [PubMed] [Google Scholar]
  • 21.Transon C, Leemann T, Vogt N, Dayer P. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther. 1995;58:412–417. doi: 10.1016/0009-9236(95)90054-3. [DOI] [PubMed] [Google Scholar]
  • 22.Leemann T, Kondo M, Zhao J, Transon C, Bonnabry P, Dayer P. The biotransformation of NSAIDs: a common elimination site and drug interactions. Schweiz Med Wochenschr. 1992;122:1897–1899. [PubMed] [Google Scholar]
  • 23.Bonnabry P, Leemann T, Dayer P. Role of human liver microsomal CYP2C9 in the biotransformation of lornoxicam. Eur J Clin Pharmacol. 1996;49:305–308. doi: 10.1007/BF00226332. [DOI] [PubMed] [Google Scholar]
  • 24.Guo Y, Zhang Y, Wang Y, Chen X, Si D, Zhong D, et al. Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab Dispos. 2005;33:749–753. doi: 10.1124/dmd.105.003616. [DOI] [PubMed] [Google Scholar]
  • 25.Chesne C, Guyomard C, Guillouzo A, Schmid J, Ludwig E, Sauter T. Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4. Xenobiotica. 1998;28:1–13. doi: 10.1080/004982598239704. [DOI] [PubMed] [Google Scholar]
  • 26.Rodrigues AD, Kukulka MJ, Roberts EM, Ouellet D, Rodgers TR. O-methyl 14C]naproxen O-demethylase activity in human liver microsomes: evidence for the involvement of cytochrome P4501A2 and P4502C9/10. Drug Metab Dispos. 1996;24:126–136. [PubMed] [Google Scholar]
  • 27.Miners JO, Coulter S, Tukey RH, Veronese ME, Birkett DJ. Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol. 1996;51:1003–1008. doi: 10.1016/0006-2952(96)85085-4. [DOI] [PubMed] [Google Scholar]
  • 28.Zhang YF, Chen XY, Guo YJ, Si DY, Zhou H, Zhong DF. Impact of cytochrome P450 CYP2C9 variant allele CYP2C9*3 on the pharmacokinetics of glibenclamide and lornoxicam in Chinese subjects. Yao Xue Xue Bao. 2005;40:796–799. [PubMed] [Google Scholar]
  • 29.Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther. 2002;72:326–332. doi: 10.1067/mcp.2002.127495. [DOI] [PubMed] [Google Scholar]
  • 30.Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract. 2006;72:148–154. doi: 10.1016/j.diabres.2005.09.019. [DOI] [PubMed] [Google Scholar]
  • 31.Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics. 1999;9:71–80. doi: 10.1097/00008571-199902000-00010. [DOI] [PubMed] [Google Scholar]
  • 32.Kirchheiner J, Brockmoller J, Meineke I, Bauer S, Rohde W, Meisel C, Roots I. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther. 2002;71:286–296. doi: 10.1067/mcp.2002.122476. [DOI] [PubMed] [Google Scholar]
  • 33.Jones BC, Hawksworth G, Horne VA, Newlands A, Morsman J, Tute MS, Smith DA. Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase) Drug Metab Dispos. 1996;24:260–266. [PubMed] [Google Scholar]
  • 34.Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5:54–59. doi: 10.1021/tx00025a009. [DOI] [PubMed] [Google Scholar]
  • 35.Black DJ, Kunze KL, Wienkers LC, Gidal BE, Seaton TL, McDonnell ND, et al. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos. 1996;24:422–428. [PubMed] [Google Scholar]
  • 36.Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics. 1994;4:39–42. doi: 10.1097/00008571-199402000-00005. [DOI] [PubMed] [Google Scholar]
  • 37.Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics. 1995;5:389–392. doi: 10.1097/00008571-199512000-00008. [DOI] [PubMed] [Google Scholar]
  • 38.Vormfelde S, Brockmoller J, Bauer S, Herchenhein P, Kuon J, Meineke I, et al. Relative impact of genotype and enzyme induction on the metabolic capacity of CYP2C9 in healthy volunteers. Clin Pharmacol Ther. 2009;1:54–61. doi: 10.1038/clpt.2009.40. [DOI] [PubMed] [Google Scholar]
  • 39.Kanebratt KP, Diczfalusy U, Backstrom T, Sparve E, Bredberg E, Bottiger Y, et al. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin Pharmacol Ther. 2008;84:589–594. doi: 10.1038/clpt.2008.132. [DOI] [PubMed] [Google Scholar]
  • 40.Wells PS, Holbrook AM, Crowther NR, Hirsh J. Interactions of warfarin with drugs and food. Ann Intern Med. 1994;121:676–683. doi: 10.7326/0003-4819-121-9-199411010-00009. [DOI] [PubMed] [Google Scholar]
  • 41.Levy RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia. 1995;36(Suppl 5):S8–S13. doi: 10.1111/j.1528-1157.1995.tb06007.x. [DOI] [PubMed] [Google Scholar]
  • 42.Scheen AJ. Drug interactions of clinical importance with antihyperglycaemic agents: an update. Drug Saf. 2005;28:601–631. doi: 10.2165/00002018-200528070-00004. [DOI] [PubMed] [Google Scholar]
  • 43.Lu Y, Won KA, Nelson BJ, Qi D, Rausch DJ, Asinger RW. Characteristics of the amiodarone-warfarin interaction during long-term follow-up. Am J Health Syst Pharm. 2008;65:947–952. doi: 10.2146/ajhp060415. [DOI] [PubMed] [Google Scholar]
  • 44.Siddoway LA. Amiodarone: guidelines for use and monitoring. Am Fam Physician. 2003;68:2189–2196. [PubMed] [Google Scholar]
  • 45.Heimark LD, Wienkers L, Kunze K, Gibaldi M, Eddy AC, Trager WF, et al. The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther. 1992;51:398–407. doi: 10.1038/clpt.1992.39. [DOI] [PubMed] [Google Scholar]
  • 46.Williams PA, Cosme J, Ward A, Angove HC, Matak VD, Jhoti H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature. 2003;424:464–468. doi: 10.1038/nature01862. [DOI] [PubMed] [Google Scholar]
  • 47.Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem. 2004;279:35630–35637. doi: 10.1074/jbc.M405427200. [DOI] [PubMed] [Google Scholar]
  • 48.Pirmohamed M, Park BK. Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicology. 2003;192:23–32. doi: 10.1016/s0300-483x(03)00247-6. [DOI] [PubMed] [Google Scholar]
  • 49.Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics. 2009;19:170–179. doi: 10.1097/FPC.0b013e32831ebb30. [DOI] [PubMed] [Google Scholar]
  • 50.Yang JQ, Morin S, Verstuyft C, Fan LA, Zhang Y, Xu CD, et al. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol. 2003;17:373–376. doi: 10.1046/j.1472-8206.2003.00148.x. [DOI] [PubMed] [Google Scholar]
  • 51.Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol. 2001;51:277–280. doi: 10.1046/j.1365-2125.2001.00340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Nakai K, Habano W, Nakai K, Fukushima N, Suwabe A, Moriya S, et al. Ethnic differences in CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) genotypes in Japanese and Israeli populations. Life Sci. 2005;78:107–111. doi: 10.1016/j.lfs.2005.04.049. [DOI] [PubMed] [Google Scholar]
  • 53.Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit. 1998;20:243–247. doi: 10.1097/00007691-199806000-00001. [DOI] [PubMed] [Google Scholar]
  • 54.Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16:101–110. doi: 10.1097/01.fpc.0000184955.08453.a8. [DOI] [PubMed] [Google Scholar]
  • 55.Lee SS, Kim KM, Thi-Le H, Yea SS, Cha IJ, Shin JG. Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population. Ther Drug Monit. 2005;27:208–210. doi: 10.1097/01.ftd.0000153402.91854.42. [DOI] [PubMed] [Google Scholar]
  • 56.Zand N, Tajik N, Moghaddam AS, Milanian I. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharmacol Physiol. 2007;34:102–105. doi: 10.1111/j.1440-1681.2007.04538.x. [DOI] [PubMed] [Google Scholar]
  • 57.Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol. 1999;48:409–415. doi: 10.1046/j.1365-2125.1999.00012.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, Mizugaki M. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol. 2002;53:596–603. doi: 10.1046/j.1365-2125.2002.01604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol. 2001;52:447–450. doi: 10.1046/j.0306-5251.2001.01460.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmoller J, Frotschl R, Kopke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003;59:303–312. doi: 10.1007/s00228-003-0606-2. [DOI] [PubMed] [Google Scholar]
  • 61.Bozina N, Granic P, Lalic Z, Tramisak I, Lovric M, Stavljenic-Rukavina A. Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population. Croat Med J. 2003;44:425–428. [PubMed] [Google Scholar]
  • 62.Burian M, Grosch S, Tegeder I, Geisslinger G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol. 2002;54:518–521. doi: 10.1046/j.1365-2125.2002.01693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F. Validation of methods for CYP2C9 genotyping: frequencies ofmutant alleles in a Swedish population. Biochem Biophys Res Commun. 1999;254:628–631. doi: 10.1006/bbrc.1998.9992. [DOI] [PubMed] [Google Scholar]
  • 64.Garcia-Martin E, Martinez C, Ladero JM, Gamito FJ, Agundez JA. High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol. 2001;57:47–49. doi: 10.1007/s002280100264. [DOI] [PubMed] [Google Scholar]
  • 65.Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353:717–719. doi: 10.1016/S0140-6736(98)04474-2. [DOI] [PubMed] [Google Scholar]
  • 66.Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S, Tashiro N. Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther Drug Monit. 2000;22:230–232. doi: 10.1097/00007691-200004000-00016. [DOI] [PubMed] [Google Scholar]
  • 67.Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements-a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009;65:365–375. doi: 10.1007/s00228-008-0584-5. [DOI] [PubMed] [Google Scholar]
  • 68.Tabrizi AR, Zehnbauer BA, Borecki IB, McGrath SD, Buchman TG, Freeman BD. The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J Am Coll Surg. 2002;194:267–273. doi: 10.1016/s1072-7515(01)01163-2. [DOI] [PubMed] [Google Scholar]
  • 69.Takahashi H, Wilkinson GR, Caraco Y, Muszkat M, Kim RB, Kashima T, et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin Pharmacol Ther. 2003;73:253–263. doi: 10.1067/mcp.2003.26a. [DOI] [PubMed] [Google Scholar]
  • 70.Mosher CM, Tai G, Rettie AE. CYP2C9 Amino acid residues influencing phenytoin turnover and metabolite regio- and stereochemistry. J Pharmacol Exp Ther. 2009;3:938–944. doi: 10.1124/jpet.109.150706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Rosemary J, Surendiran A, Rajan S, Shashindran CH, Adithan C. Influence of the CYP2C9 AND CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from south India. Indian J Med Res. 2006;123:665–670. [PubMed] [Google Scholar]
  • 72.Van der Weide J, Steijns LS, van Weelden MJ, de Haan K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001;11:287–291. doi: 10.1097/00008571-200106000-00002. [DOI] [PubMed] [Google Scholar]
  • 73.Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics. 2001;11:803–808. doi: 10.1097/00008571-200112000-00008. [DOI] [PubMed] [Google Scholar]
  • 74.Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics. 1996;6:341–349. doi: 10.1097/00008571-199608000-00007. [DOI] [PubMed] [Google Scholar]
  • 75.Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, et al. Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics. 2000;10:85–89. doi: 10.1097/00008571-200002000-00011. [DOI] [PubMed] [Google Scholar]
  • 76.Allabi AC, Gala JL, Horsmans Y. CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet Genomics. 2005;15:779–786. doi: 10.1097/01.fpc.0000174787.92861.91. [DOI] [PubMed] [Google Scholar]
  • 77.Chen Y, Kissling G, Negishi M, Goldstein JA. The nuclear receptors constitutive androstane receptor and pregnane X receptor cross-talk with hepatic nuclear factor 4alpha to synergistically activate the human CYP2C9 promoter. J Pharmacol Exp Ther. 2005;314:1125–1133. doi: 10.1124/jpet.105.087072. [DOI] [PubMed] [Google Scholar]
  • 78.Ferguson SS, LeCluyse EL, Negishi M, Goldstein JA. Regulation of human CYP2C9 by the constitutive androstane receptor: discovery of a new distal binding site. Mol Pharmacol. 2002;62:737–746. doi: 10.1124/mol.62.3.737. [DOI] [PubMed] [Google Scholar]
  • 79.Veenstra DL, Blough DK, Higashi MK, Farin FM, Srinouanprachan S, Rieder MJ, Rettie AE. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther. 2005;77:353–364. doi: 10.1016/j.clpt.2005.01.019. [DOI] [PubMed] [Google Scholar]
  • 80.Lee SC, Ng SS, Oldenburg J, Chong PY, Rost S, Guo JY, et al. Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther. 2006;79:197–205. doi: 10.1016/j.clpt.2005.11.006. [DOI] [PubMed] [Google Scholar]
  • 81.Takahashi H, Ieiri I, Wilkinson GR, Mayo G, Kashima T, Kimura S, et al. 5′-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients. Blood. 2004;103:3055–3057. doi: 10.1182/blood-2003-07-2521. [DOI] [PubMed] [Google Scholar]
  • 82.Shintani M, Ieiri I, Inoue K, Mamiya K, Ninomiya H, Tashiro N, et al. Genetic polymorphisms and functional characterization of the 5′-flanking region of the human CYP2C9 gene: in vitro and in vivo studies. Clin Pharmacol Ther. 2001;70:175–182. doi: 10.1067/mcp.2001.117367. [DOI] [PubMed] [Google Scholar]
  • 83.Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 promoter variants and assessment of their impact on gene expression. Mol Pharmacol. 2008;73:1751–1760. doi: 10.1124/mol.107.044149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77:1–16. doi: 10.1016/j.clpt.2004.08.009. [DOI] [PubMed] [Google Scholar]
  • 85.Ho PC, Abbott FS, Zanger UM, Chang TK. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 2003;3:335–342. doi: 10.1038/sj.tpj.6500210. [DOI] [PubMed] [Google Scholar]
  • 86.Tang C, Shou M, Rushmore TH, Mei Q, Sandhu P, Woolf EJ, et al. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics. 2001;11:223–235. doi: 10.1097/00008571-200104000-00006. [DOI] [PubMed] [Google Scholar]
  • 87.Daly AK, King BP. Contribution of CYP2C9 to variability in vitamin K antagonist metabolism. Expert Opin Drug Metab Toxicol. 2006;2:3–15. doi: 10.1517/17425255.2.1.3. [DOI] [PubMed] [Google Scholar]
  • 88.Solus JF, Arietta BJ, Harris JR, Sexton DP, Steward JQ, McMunn C, et al. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics. 2004;5:895–931. doi: 10.1517/14622416.5.7.895. [DOI] [PubMed] [Google Scholar]
  • 89.Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics. 2000;10:95–104. doi: 10.1097/00008571-200003000-00001. [DOI] [PubMed] [Google Scholar]
  • 90.Kusama M, Maeda K, Chiba K, Aoyama A, Sugiyama Y. Prediction of the effects of genetic polymorphism on the pharmacokinetics of CYP2C9 substrates from in vitro data. Pharm Res. 2009;26:822–835. doi: 10.1007/s11095-008-9781-2. [DOI] [PubMed] [Google Scholar]
  • 91.Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA. Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. Eur J Clin Pharmacol. 2003;58:791–794. doi: 10.1007/s00228-003-0574-6. [DOI] [PubMed] [Google Scholar]

RESOURCES