Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2001 Oct 3;3(1):54–67. doi: 10.1007/s101620010042

Gene Expression Profiles of the Rat Cochlea, Cochlear Nucleus, and Inferior Colliculus

Younsook Cho 1,2, Tzy-Wen L Gong 2, Timo Stöver 2,3, Margaret I Lomax 1,2, Richard A Altschuler 1,2,
PMCID: PMC3202363  PMID: 12083724

Abstract

High-throughput DNA microarray technology allows for the assessment of large numbers of genes and can reveal gene expression in a specific region, differential gene expression between regions, as well as changes in gene expression under changing experimental conditions or with a particular disease. The present study used a gene array to profile normal gene expression in the rat whole cochlea, two subregions of the cochlea (modiolar and sensorineural epithelium), and the cochlear nucleus and inferior colliculus of the auditory brainstem. The hippocampus was also assessed as a well-characterized reference tissue. Approximately 40% of the 588 genes on the array showed expression over background. When the criterion for a signal threshold was set conservatively at twice background, the number of genes above the signal threshold ranged from approximately 20% in the cochlea to 30% in the inferior colliculus. While much of the gene expression pattern was expected based on the literature, gene profiles also revealed expression of genes that had not been reported previously. Many genes were expressed in all regions while others were differentially expressed (defined as greater than a twofold difference in expression between regions). A greater number of differentially expressed genes were found when comparing peripheral (cochlear) and central nervous system regions than when comparing the central auditory regions and the hippocampus. Several families of insulin-like growth factor binding proteins, matrix metalloproteinases, and tissue inhibitor of metalloproteinases were among the genes expressed at much higher levels in the cochlea compared with the central nervous system regions.

Keywords: Gene array, DNA microarray, gene expression, hippocampus, inferior colliculus, cochlear nucleus, cochlea

Full Text

The Full Text of this article is available as a PDF (831.3 KB).

Acknowledgements

This research was supported by NIDCD program project grant (#PO1 DC02982).

References

  • 1.Altschuler RA, Betz H, Parakkal MH, Reeks KA, Wenthold RJ. Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res. 1986a;369:316–320. doi: 10.1016/0006-8993(86)90542-1. [DOI] [PubMed] [Google Scholar]
  • 2.Altschuler RA, Hoffman DW, Wenthold RJ. Neurotransmitters of the cochlea and cochlear nucleus: immunocytochemical evidence. Am. J. Otolaryngol. 1986b;7:100–106. doi: 10.1016/s0196-0709(86)80038-2. [DOI] [PubMed] [Google Scholar]
  • 3.Altschuler RA, Reeks KA, Marangos PJ. Neuron-specific enolase-like immunoreactivity in inner hair cells but not outer hair cells in the guinea pig organ of Corti. Brain Res. 1985;327:379–384. doi: 10.1016/0006-8993(85)91541-0. [DOI] [PubMed] [Google Scholar]
  • 4.Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase [see comments]. Nature. 1998;393:805–309. doi: 10.1038/31729. [DOI] [PubMed] [Google Scholar]
  • 5.Barnes–Davies M, Forsythe ID. Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J. Physiol. 1995;488:387–406. doi: 10.1113/jphysiol.1995.sp020974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bilak MM, Bilak SR, Morest DK. Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience. 1996;75:1075–1087. doi: 10.1016/0306-4522(96)00197-2. [DOI] [PubMed] [Google Scholar]
  • 7.Cerro JA, Grewal A, Wood TL, Pintar JE. Tissue-specific expression of the insulin-like growth factor binding protein (IGFBP) mRNAs in mouse and rat development. Regul. Pept. 1993;48:189–198. doi: 10.1016/0167-0115(93)90347-B. [DOI] [PubMed] [Google Scholar]
  • 8.Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999;126:1581–1590. doi: 10.1242/dev.126.8.1581. [DOI] [PubMed] [Google Scholar]
  • 9.Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  • 10.Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998;282:699–705. doi: 10.1126/science.282.5389.699. [DOI] [PubMed] [Google Scholar]
  • 11.Crawford HC, Matrisian LM. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein. 1996;49:20–37. doi: 10.1159/000468614. [DOI] [PubMed] [Google Scholar]
  • 12.el Barbary A, Altschuler RA, Schacht J. Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear. Res. 1993;71:80–90. doi: 10.1016/0378-5955(93)90023-T. [DOI] [PubMed] [Google Scholar]
  • 13.Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996;85:733–744. doi: 10.1016/s0092-8674(00)81239-8. [DOI] [PubMed] [Google Scholar]
  • 14.Ferry Jr RJ, Cerri RW, Cohen P. Insulin-like growth factor binding proteins: new proteins, new functions. Horm. Res. 1999;51:53–67. doi: 10.1159/000023315. [DOI] [PubMed] [Google Scholar]
  • 15.Friauf E, Hammerschmidt B, Kirsch J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J. Comp. Neurol. 1997;385:117–134. doi: 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  • 16.Gong TW, Hegeman AD, Shin JJ, Adler HJ, Raphael Y, Lomax MI. Identification of genes expressed after noise exposure in the chick basilar papilla. Hear. Res. 1996;96:20–32. doi: 10.1016/0378-5955(96)00013-5. [DOI] [PubMed] [Google Scholar]
  • 17.Green BN, Jones SB, Streck RD, Wood TL, Rotwein P, Pintar JE. Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development. Endocrinology. 1994;134:954–962. doi: 10.1210/endo.134.2.7507840. [DOI] [PubMed] [Google Scholar]
  • 18.Hafidi A, Moore T, Sanes DH. Regional distribution of neurotrophin receptors in the developing auditory brainstem. J. Comp. Neurol. 1996;367:454–464. doi: 10.1002/(SICI)1096-9861(19960408)367:3<454::AID-CNE10>3.3.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 19.Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal–Hansen H. MT1–MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999;99:81–92. doi: 10.1016/s0092-8674(00)80064-1. [DOI] [PubMed] [Google Scholar]
  • 20.Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J. Neurosci. 1999;19:8377–8388. doi: 10.1523/JNEUROSCI.19-19-08377.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hunter C, Petralia RS, Vu T, Wenthold RJ. Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. J. Neurosci. 1993;13:1932–1946. doi: 10.1523/JNEUROSCI.13-05-01932.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Jarlebark LE, Housley GD, Thorne PR. Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J. Comp. Neurol. 2000;421:289–301. doi: 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 23.Juiz JM, Albin RL, Helfert RH, Altschuler RA. Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Res. 1994;639:193–201. doi: 10.1016/0006-8993(94)91730-2. [DOI] [PubMed] [Google Scholar]
  • 24.Kiyokawa H, Kineman RD, Manova–Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996;85:721–732. doi: 10.1016/s0092-8674(00)81238-6. [DOI] [PubMed] [Google Scholar]
  • 25.Kuriyama H, Albin RL, Altschuler RA. Expression of NMDA-receptor mRNA in the rat cochlea. Hear. Res. 1993;69:215–220. doi: 10.1016/0378-5955(93)90110-M. [DOI] [PubMed] [Google Scholar]
  • 26.Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 1999;154:313–323. doi: 10.1016/S0002-9440(10)65277-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc. Natl. Sci. U S A. 1999;96:4084–4088. doi: 10.1073/pnas.96.7.4084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Muller HL, Oh Y, Lehrnbecher T, Blum WF, Rosenfeld RG. Insulin-like growth factor-binding protein-2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J. Clin. Endocrinol. Metab. 1994;79:428–434. doi: 10.1210/jcem.79.2.7519190. [DOI] [PubMed] [Google Scholar]
  • 29.Murphy LJ. Insulin-like growth factor-binding proteins: functional diversity or redundancy? J. Mol. Endocrinol. 1998;21:97–107. doi: 10.1677/jme.0.0210097. [DOI] [PubMed] [Google Scholar]
  • 30.Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85:707–720. doi: 10.1016/s0092-8674(00)81237-4. [DOI] [PubMed] [Google Scholar]
  • 31.Niedzielski AS, Safieddine S, Wenthold RJ. Molecular analysis of excitatory amino acid receptor expression in the cochlea [erratum: Audiol. Neurootol. 1997; 2(4):231] Audiol. Neurootol. 1997;2:79–91. doi: 10.1159/000259232. [DOI] [PubMed] [Google Scholar]
  • 32.Niedzielski AS, Wenthold RJ. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J. Neurosci. 1995;15:2338–2353. doi: 10.1523/JNEUROSCI.15-03-02338.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci U S A. 1995;92:2730–2734. doi: 10.1073/pnas.92.7.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Robertson NG, Khetarpal U, Gutierrez–Espeleta GA, Bieber FR, Morton CC. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics. 1994;23:42–50. doi: 10.1006/geno.1994.1457. [DOI] [PubMed] [Google Scholar]
  • 35.Rosenfeld RG, Hwa V, Wilson L, Lopez–Bermejo A, Buckway C, Burren C, Choi WK, Devi G, Ingermann A, Graham D, Minniti G, Spagnoli A, Oh Y. The insulin-like growth factor binding protein superfamily: new perspectives. Pediatrics. 1999;104:1018–1021. [PubMed] [Google Scholar]
  • 36.Safieddine S, Eybalin M. Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones. Neuroreport. 1992;3:1145–1148. doi: 10.1097/00001756-199212000-00029. [DOI] [PubMed] [Google Scholar]
  • 37.Sato K, Kuriyama H, Altschuler RA. Expression of glycine receptor subunits in the cochlear nucleus and superior olivary complex using non-radioactive in-situ hybridization. Hear. Res. 1995;91:7–18. doi: 10.1016/0378-5955(95)00156-5. [DOI] [PubMed] [Google Scholar]
  • 38.Sato K, Kuriyama H, Altschuler RA. Differential distribution of NMDA receptor subunit mRNA in the rat cochlear nucleus. Microsc. Res. Tech. 1998;41:217–223. doi: 10.1002/(SICI)1097-0029(19980501)41:3<217::AID-JEMT5>3.3.CO;2-5. [DOI] [PubMed] [Google Scholar]
  • 39.Sato K, Kuriyama H, Altschuler RA. Expression of glycine receptor subunit mRNAs in the rat cochlear nucleus. Hear. Res. 2000a;144:47–52. doi: 10.1016/s0378-5955(00)00044-7. [DOI] [PubMed] [Google Scholar]
  • 40.Sato K, Shiraishi S, Nakagawa H, Kuriyama H, Altschuler RA. Diversity and plasticity in amino acid receptor subunits in the rat auditory brain stem. Hear. Res. 2000b;147:137–144. doi: 10.1016/s0378-5955(00)00127-1. [DOI] [PubMed] [Google Scholar]
  • 41.Siddique S, Drescher M, Khan K, Hatfield J, Drescher D. Expression of GABA-B receptor subunit transcript and protein in the rat cochlea and microdissected subfractions. Abstr. Assoc. Res. Otolaryngol. 2000;23:465. [Google Scholar]
  • 42.Skvorak AB, Weng Z, Yee AJ, Robertson NG, Morton CC. Human cochlear expressed sequence tags provide insight into cochlear gene expression and identify candidate genes for deafness. Hum. Mol. Genet. 1999;8:439–452. doi: 10.1093/hmg/8.3.439. [DOI] [PubMed] [Google Scholar]
  • 43.Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z. The stromal proteinase MMP3/Stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–146. doi: 10.1016/s0092-8674(00)81009-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP-3) in patients with Sorsby's fundus dystrophy. Nat. Genet. 1994;8:352–356. doi: 10.1038/ng1294-352. [DOI] [PubMed] [Google Scholar]
  • 45.Wenthold RJ, Petralia RS, Blahos II J, Niedzielski AS. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 1996;16:1982–1989. doi: 10.1523/JNEUROSCI.16-06-01982.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Wetterau LA, Moore MG, Lee KW, Shim ML, Cohen P. Novel aspects of the insulin-like growth factor binding proteins. Mol. Genet. Metab. 1999;68:161–181. doi: 10.1006/mgme.1999.2920. [DOI] [PubMed] [Google Scholar]
  • 47.Wood TL. Gene-targeting and transgenic approaches to IGF and IGF binding protein function. Am. J. Physiol. 1995;269:E613–E622. doi: 10.1152/ajpendo.1995.269.4.E613. [DOI] [PubMed] [Google Scholar]
  • 48.Wood TL, Rogler L, Streck RD, Cerro J, Green B, Grewal A, Pintar JE. Targeted disruption of IGFBP-2 gene. Growth Regul. 1993;3:5–8. [PubMed] [Google Scholar]
  • 49.Wynne B, Harvey AR, Robertson D, Sirinathsinghji DJ. Neurotransmitter and neuromodulator systems of the rat inferior colliculus and auditory brainstem studied by in situ hybridization. J. Chem. Neuroanat. 1995;9:289–300. doi: 10.1016/0891-0618(95)00095-X. [DOI] [PubMed] [Google Scholar]
  • 50.Wynne B, Robertson D. Somatostatin and substance P-like immunoreactivity in the auditory brainstem of the adult rat. J. Chem. Neuroanat. 1997;12:259–266. doi: 10.1016/S0891-0618(97)00219-6. [DOI] [PubMed] [Google Scholar]
  • 51.Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization [see comments]. Nature. 1998;393:809–812. doi: 10.1038/31735. [DOI] [PubMed] [Google Scholar]
  • 52.Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear. Res. 1993;65:69–78. doi: 10.1016/0378-5955(93)90202-C. [DOI] [PubMed] [Google Scholar]
  • 53.Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR. Matrix metalloproteinase and diseases of the CNS. Trends Neurosci. 1998;21:75–80. doi: 10.1016/S0166-2236(97)01169-7. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES