Abstract
To identify genes involved in hearing, 8494 expressed sequence tags (ESTs) were generated from a human fetal cochlear cDNA library in two distinct sequencing projects. Analysis of the first set of 4304 ESTs revealed clones representing 517 known human genes, 41 mammalian genes not previously detected in human tissues, 487 ESTs from other human tissues, and 541 cochlear-specific ESTs (http://hearing.bwh.harvard.edu ). We now report results of a DNA sequence similarity (BLAST) analysis of an additional 4190 cochlear ESTs and a comparison to the first set. Among the 4190 new cochlear ESTs, 959 known human genes were identified; 594 were found only among the new ESTs and 365 were found among ESTs from both sequencing projects. COL1A2 was the most abundant transcript among both sets of ESTs, followed in order by COL3A1, SPARC, EEF1A1, and TPTI. An additional 22 human homologs of known nonhuman mammalian genes and 1595 clusters of ESTs, of which 333 are cochlear-specific, were identified among the new cochlear ESTs. Map positions were determined for 373 of the new cochlear ESTs and revealed 318 additional loci. Forty-nine of the mapped ESTs are located within the genetic interval of 23 deafness loci. Reanalysis of unassigned ESTs from the prior study revealed 338 additional known human genes. The total number of known human genes identified from 8494 cochlear ESTs is 1449 and is represented by 4040 ESTs. Among the known human genes are 14 deafness-associated genes, including GJB2 (connexin 26) and KVLQT1. The total number of nonhuman mammalian genes identified is 43 and is represented by 58 ESTs. The total number of ESTs without sequence similarity to known genes is 4055. Of these, 778 also do not have sequence similarity to any other ESTs, are categorized into 700 clusters, and may represent genes uniquely or preferentially expressed in the cochlea. Identification of additional known genes, ESTs, and cochlear-specific ESTs provides new candidate genes for both syndromic and nonsyndromic deafness disorders.
Keywords: ESTs, genes, cochlea, cochlear-expressed genes
Full Text
The Full Text of this article is available as a PDF (312.8 KB).
Acknowledgements
We thank the staff, especially Christa Prange, at Lawrence Livermore National Laboratory for gridding, handling of, and helpful discussions regarding the cochlear cDNA clones. We thank Drs. Gerard Bouffard and Jeff Touchman and the staff of the NIH Intramural Sequencing Center (NISC) for EST sequencing and for their helpful discussions. We thank Jane Weisemann at the National Center for Biotechnology Information (NCBI) for her assistance in identifying cochlear ESTs with yeast homology. We also greatly appreciate the continued interest and support of Dr. James Battey and the NIDCD in developing a transcript map for the human cochlea. This work was supported by NIDCD grants DC03402 (CCM) and F32 DC00405 (BLR) and by NSF grant DBI-9806002 (ZW and JDS).
References
- 1.Altschul SF, Madden TL, Scäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Gorlin RJ, Toriello HV, Cohen MM. Hereditary hearing loss and its syndromes. Oxford: Oxford University Press; 1995. [Google Scholar]
- 3.Gurish MF, Bell AF, Smith TJ, Ducharme LA, Wang RK, Weis JH. Expression of murine beta 7, alpha 4, and beta 1 integrin genes by rodent mast cells. J. Immunol. 1992;149:1964–1972. [PubMed] [Google Scholar]
- 4.Hedrick SM, Coen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308:149–153. doi: 10.1038/308149a0. [DOI] [PubMed] [Google Scholar]
- 5.Jones DT, Reed RR. Golf: an olfactory neuron specific G-protein involved in odorant signal transduction. Science. 1989;244:790–795. doi: 10.1126/science.2499043. [DOI] [PubMed] [Google Scholar]
- 6.Morton NE. Genetic epidemiology of hearing impairment. Ann. N. Y. Acad. Sci. 1991;630:16–31. doi: 10.1111/j.1749-6632.1991.tb19572.x. [DOI] [PubMed] [Google Scholar]
- 7.Robertson NG, Heller S, Lin JS, Resendes BL, Weremowicz S, Denis CS, Bell AM, Hudspeth AJ, Morton CC. A novel conserved cochlear gene, OTOR: Identification, expression analysis, and chromosomal mapping. Genomics. 2000;66:242–248. doi: 10.1006/geno.2000.6224. [DOI] [PubMed] [Google Scholar]
- 8.Robertson NG, Khetarphal U, Gutierrex–Espeleta GA, Bieber FR, Morton CC. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics. 1994;23:42–50. doi: 10.1006/geno.1994.1457. [DOI] [PubMed] [Google Scholar]
- 9.Robertson NG, Lu L, Heller S, Merchant SN, McKenna M, Eavy RD, Nadol JB, Myamoto RT, Lubianca Neto JF, Hudspeth et al. AJ. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat. Genet. 1998;20:299–303. doi: 10.1038/3118. [DOI] [PubMed] [Google Scholar]
- 10.Robertson NG, Skvorak AB, Yin Y, Weremowicz S, Johnson KR, Kovatch KA, Battey JF, Bieber FR, Morton CC. Mapping and characterization of a novel cochlear gene in human and in mouse: a positional candidate gene for a deafness disorder, DFNA9. Genomics. 1997;46:345–354. doi: 10.1006/geno.1997.5067. [DOI] [PubMed] [Google Scholar]
- 11.Skvorak AB, Robertson NG, Yin Y, Weremowicz S, Her H, Bieber FR, Beisel KW, Lynch ED, Beier DR, Morton CC. An ancient conserved gene expressed in the human inner ear: identification, expression analysis, and chromosomal mapping of human and mouse antiquitin (ATQI). Genomics. 1997;46:191–199. doi: 10.1006/geno.1997.5026. [DOI] [PubMed] [Google Scholar]
- 12.Skvorak AB, Weng Z, Yee A, Robertson NG, Morton CC. Human cochlear expressed sequence tags provide insight into cochlear gene expression and identify candidate genes for deafness. Hum. Mol. Genet. 1999;8:439–452. doi: 10.1093/hmg/8.3.439. [DOI] [PubMed] [Google Scholar]
- 13.Steel KP, Kros CJ. A genetic approach to understanding auditory function. Nat. Genet. 2001;27:143–149. doi: 10.1038/84758. [DOI] [PubMed] [Google Scholar]
- 14.Van Camp G, Smith RJH (2001) Hereditary Hearing Loss home page. http://www.uia.ac.be/dnalab/hhh
- 15.Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment: unparalleled heterogeneity. Am. J. Hum. Genet. 1997;60:758–764. [PMC free article] [PubMed] [Google Scholar]
