Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2001 Aug 31;3(1):16–25. doi: 10.1007/s101620010089

A Multifrequency Method for Determining Cochlear Efferent Activity

Anne E Luebke 1,2,, Paul K Foster 1, Barden B Stagner 1
PMCID: PMC3202367  PMID: 12083721

Abstract

A test based on measures of distortion-product otoacoustic emissions (DPOAEs) was developed in lightly anesthetized guinea pigs and alert rabbits to assess the effective activation or functional "strength" of the cochlear efferent system. The multifrequency method described here used the DP-gram frequency function to evaluate the fast component of the olivocochlear adaptive effect on DPOAE levels over a 2-octave frequency range. An estimate of any concurrent muscle activation was also determined over the identical frequency range by monitoring the levels of the eliciting f1 primary tone throughout its duration. The acoustic reflex, as measured by this f1 level constancy test, did not appear to contribute to the average efferent strength of sedated guinea pigs, but the acoustic reflex did contribute to the average "efferent" strength of awake rabbits. Hence, the average efferent effect in alert rabbits is contaminated by the acoustic reflex, which confounds its interpretation.

Keywords: cochlea, distortion-product otoacoustic emissions, fast adaptation, acoustic reflex, olivocochlear efferent system, guinea pigs, rabbits

Full Text

The Full Text of this article is available as a PDF (440.2 KB).

Acknowledgements

This work was supported by the Public Health Service (DC03086, DC03114, DC00613) and the University of Miami's Chandler Chair Fund. We would like to thank Dr. Brenda Lonsbury-Martin and Dr. Glen Martin and the reviewers for their suggestions to this article.

References

  • 1.Astl J, Popelar J, Kvasnak E, Syka J. Comparison of response properties of neurons in the inferior colliculus of guinea pigs under different anesthetics. Audiology. 1996;35:335–345. doi: 10.3109/00206099609071954. [DOI] [PubMed] [Google Scholar]
  • 2.Berlin CI, Hood LJ, Hurley A, Wen H. The First Jerger Lecture. Contralateral suppression of otoacoustic emissions: an index of the function of the medial olivocochlear system. Otolaryngol. Head Neck Surg. 1994;110:3–21. doi: 10.1177/019459989411000102. [DOI] [PubMed] [Google Scholar]
  • 3.Brown AM. Acoustic distortion from rodent ears: A comparison of responses from rats, guinea pigs and gerbils. Hear. Res. 1987;31:25–38. doi: 10.1016/0378-5955(87)90211-5. [DOI] [PubMed] [Google Scholar]
  • 4.Chery–Croze S, Moulin A, Collet L. Effect of contralateral sound stimulation on the distortion product 2f1 - f2 in humans: evidence of a frequency specificity. Hear. Res. 1993;68:53–58. doi: 10.1016/0378-5955(93)90064-8. [DOI] [PubMed] [Google Scholar]
  • 5.Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A. Effect of contralateral auditory stimuli on active cochlear micromechanical properties in human subjects. Hear. Res. 1990;43:251–261. doi: 10.1016/0378-5955(90)90232-e. [DOI] [PubMed] [Google Scholar]
  • 6.Guinan Jr JJ, Warr WB, Norris BE. Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J. Comp. Neurol. 1983;221:358–370. doi: 10.1002/cne.902210310. [DOI] [PubMed] [Google Scholar]
  • 7.Guinan Jr JJ, Warr WB, Norris BE. Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J. Comp. Neurol. 1984;226:21–27. doi: 10.1002/cne.902260103. [DOI] [PubMed] [Google Scholar]
  • 8.Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrison RV. The effects of anesthesia on otoacoustic emissions. Hear. Res. 1997;110:25–33. doi: 10.1016/S0378-5955(97)00061-0. [DOI] [PubMed] [Google Scholar]
  • 9.Liberman MC, Guinan Jr JJ. Feedback control of the auditory periphery: anti-masking effects of middle ear muscles vs. olivocochlear efferents. J Commun Disord. 1998;31:471–553. doi: 10.1016/S0021-9924(98)00019-7. [DOI] [PubMed] [Google Scholar]
  • 10.Liberman MC, Puria S, Guinan Jr JJ. The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1 - f2 distortion product otoacoustic emission. J. Acoust. Soc. Am. 1996;99:3572–3584. doi: 10.1121/1.414956. [DOI] [PubMed] [Google Scholar]
  • 11.Maison SF, Liberman MC. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Martin GK, Jassir D, Stagner BB, Whitehead ML, Lonsbury–Martin BL. Locus of generation for the 2f1 - f2 vs 2f2 - f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. J. Acoust. Soc. Am. 1998;103:1957–1971. doi: 10.1121/1.421347. [DOI] [PubMed] [Google Scholar]
  • 13.Moulin A, Collet L, Duclaux R. Contralateral auditory stimulation alters acoustic distortion products in humans. Hear. Res. 1993;65:193–210. doi: 10.1016/0378-5955(93)90213-K. [DOI] [PubMed] [Google Scholar]
  • 14.Mountain DC, Geisler CD, Hubbard AE. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig. Hear. Res. 1980;3:231–240. doi: 10.1016/0378-5955(80)90049-0. [DOI] [PubMed] [Google Scholar]
  • 15.Puel JL, Rebillard G. Effect of contralateral sound stimulation on the distortion product 2F1 - F2: evidence that the medial efferent system is involved. J. Acoust. Soc. Am. 1990;87:1630–1635. doi: 10.1121/1.399410. [DOI] [PubMed] [Google Scholar]
  • 16.Siegel JH, Kim DO. Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear. Res. 1982;6:171–182. doi: 10.1016/0378-5955(82)90052-1. [DOI] [PubMed] [Google Scholar]
  • 17.Smith DI, Mills JH. Anesthesia effects: auditory brain-stem response. Electroencephalogr. Clin. Neurophysiol. 1989;72:422–428. doi: 10.1016/0013-4694(89)90047-3. [DOI] [PubMed] [Google Scholar]
  • 18.Sun XM, Kim DO. Adaptation of 2f1 - 2f2 distortion product otoacoustic emission in young-adult and old CBA and C57 mice. J. Acoust. Soc. Am. 1999;105:3399–3409. doi: 10.1121/1.424668. [DOI] [PubMed] [Google Scholar]
  • 19.Whitehead ML, Lonsbury–Martin BL, Martin GK. Slow variation of the amplitude of acoustic distortion at f2 - f1 in awake rabbits. Hear. Res. 1991;51:293–300. doi: 10.1016/0378-5955(91)90045-B. [DOI] [PubMed] [Google Scholar]
  • 20.Whitehead ML, Lonsbury–Martin BL, Martin GK. Evidence for two discrete sources of 2f1 - f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. J. Acoust. Soc. Am. 1992;91:1587–1607. doi: 10.1121/1.402440. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES