Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Aug;78(8):4772–4776. doi: 10.1073/pnas.78.8.4772

Induction of prothrombin synthesis by prothrombin fragments.

C B Graves, T W Munns, T L Carlisle, G A Grant, A W Strauss
PMCID: PMC320245  PMID: 6946425

Abstract

The mechanisms by which blood levels of prothrombin (PT) are regulated in the vitamin K-sufficient state are unknown. We have studied PT synthesis by Reuber H-35 rat hepatoma cells exposed to vitamin K and [3H]leucine in serum-free cultures. Administration to the culture system of exogenous bovine PT and rat PT was characterized by increases in endogenous PT synthesis and secretion of 2- and 3-fold, respectively. This induction required endogenous proteolytic degradation of PT. Studies conducted with bovine PT fragment 1 (residues 1-156) demonstrated up to 5-fold increases in PT synthesis. This induction was dose dependent and saturable. Addition of bovine PT chymotryptic fragments to the cells indicated that the NH2-terminal peptide of prothrombin (residues 1-42) contained the requisite structural elements for the induction. Peptide-bound gamma-carboxyglutamate residues were required for the observed stimulation of PT synthesis. These results suggest that PT synthesis might be regulated physiologically by the products formed during its normal turnover and consumption during blood coagulation.

Full text

PDF
4772

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bocci V., Conti T., Muscettola M., Pacini A., Pessina G. P. Factors regulating plasma protein synthesis. IV. Influence of fragments D and E on plasma fibrinogen concentration. Thromb Diath Haemorrh. 1974 Jun 30;31(3):395–402. [PubMed] [Google Scholar]
  2. Butkowski R. J., Elion J., Downing M. R., Mann K. G. Primary structure of human prethrombin 2 and alpha-thrombin. J Biol Chem. 1977 Jul 25;252(14):4942–4957. [PubMed] [Google Scholar]
  3. Davie E. W., Fujikawa K. Basic mechanisms in blood coagulation. Annu Rev Biochem. 1975;44:799–829. doi: 10.1146/annurev.bi.44.070175.004055. [DOI] [PubMed] [Google Scholar]
  4. Grant G. A., Suttie J. W. Rat prothrombin: purification, characterization, and activation. Arch Biochem Biophys. 1976 Oct;176(2):650–662. doi: 10.1016/0003-9861(76)90209-5. [DOI] [PubMed] [Google Scholar]
  5. Graves C. B., Grabau G. G., Olson R. E., Munns T. W. Immunochemical isolation and electrophoretic characterization of precursor prothrombins in H-35 rat hepatoma cells. Biochemistry. 1980 Jan 22;19(2):266–272. doi: 10.1021/bi00543a003. [DOI] [PubMed] [Google Scholar]
  6. Ittyerah T. R., Weidner N., Wochner R. D., Sherman L. A. Effect of fibrin degradation products and thrombin on fibrinogen synthesis. Br J Haematol. 1979 Dec;43(4):661–668. doi: 10.1111/j.1365-2141.1979.tb03799.x. [DOI] [PubMed] [Google Scholar]
  7. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  8. Karpatkin M., Karpatkin S. Humoral factor that specifically regulates prothrombin (factor II) levels (coagulopoietin-II). Proc Natl Acad Sci U S A. 1979 Jan;76(1):491–493. doi: 10.1073/pnas.76.1.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kessler C. M., Bell W. R. Stimulation of fibrinogen synthesis: a possible functional role of fibrinogen degradation products. Blood. 1980 Jan;55(1):40–47. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Magnusson S., Sottrup-Jensen L., Petersen T. E., Morris H. R., Dell A. Primary structure of the vitamin K-dependent part of prothrombin. FEBS Lett. 1974 Aug 25;44(2):189–193. doi: 10.1016/0014-5793(74)80723-4. [DOI] [PubMed] [Google Scholar]
  12. Moore H. C., Lux S. E., Malhotra O. P., Bakerman S., Carter J. R. Isolation and purification of bovine and canine prothrombin. Biochim Biophys Acta. 1965 Nov 15;111(1):174–180. doi: 10.1016/0304-4165(65)90484-8. [DOI] [PubMed] [Google Scholar]
  13. Munns T. W., Johnston M. F., Liszewski M. K., Olson R. E. Vitamin K-dependent synthesis and modification of precursor prothrombin in cultured H-35 hepatoma cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2803–2807. doi: 10.1073/pnas.73.8.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Owen W. G., Esmon C. T., Jackson C. M. The conversion of prothrombin to thrombin. I. Characterization of the reaction products formed during the activation of bovine prothrombin. J Biol Chem. 1974 Jan 25;249(2):594–605. [PubMed] [Google Scholar]
  15. Poser J. W., Price P. A. A method for decarboxylation of gamma-carboxyglutamic acid in proteins. Properties of the decarboxylated gamma-carboxyglutamic acid protein from calf bone. J Biol Chem. 1979 Jan 25;254(2):431–436. [PubMed] [Google Scholar]
  16. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stenflo J., Suttie J. W. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem. 1977;46:157–172. doi: 10.1146/annurev.bi.46.070177.001105. [DOI] [PubMed] [Google Scholar]
  18. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES