Abstract
An ADP-ribosyltransferase from turkey erythrocytes, which catalyzes the mono(ADP-ribosylation) of guanidino compounds such as arginine and of many purified and crude cellular proteins, appears to exist both in high-activity, histone-independent and low-activity, histone-dependent forms. At low salt concentrations, the activity of the transferase with agmatine as acceptor was less than 10% that observed in the presence of 200 mM NaCl. In the absence of salts, ADP-ribosylation of agmatine was stimulated greater than 10-fold by histones, and activity approached that observed with high salt concentration; under these conditions, the histones did not serve as ADP-ribose acceptors themselves. Histone also activated the highly purified ADP-ribosyltransferase from human erythrocytes. Enzyme activity was increased in the presence of salt and was then relatively independent of histones. DNA was not required for the stimulation of ADP-ribosylation by histone; incubation of the transferase and histone with DNase did not significantly decrease enzymatic activity. Additional DNA in the assay decreased the effect of histone. The erythrocyte ADP-ribosyltransferase from diverse species thus appears to exist in two forms: one is dependent on histones for activity and one which, in the presence of salt, has high intrinsic activity and is independent of histone. The fact that the active forms of the transferase generated in the presence of salt or histone have similar catalytic activity suggests that these forms of transferase may be identical. It would appear that the enzymatic activity of transferase from different species may be controlled by histones.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burzio L. O., Riquelme P. T., Koide S. S. ADP ribosylation of rat liver nucleosomal core histones. J Biol Chem. 1979 Apr 25;254(8):3029–3037. [PubMed] [Google Scholar]
- Gill D. M. Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res. 1977;8:85–118. [PubMed] [Google Scholar]
- Hayaishi O., Ueda K. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem. 1977;46:95–116. doi: 10.1146/annurev.bi.46.070177.000523. [DOI] [PubMed] [Google Scholar]
- Iglewski B. H., Kabat D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin,. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2284–2288. doi: 10.1073/pnas.72.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito S., Shizuta Y., Hayaishi O. Purification and characterization of poly(ADP-ribose) synthetase from calf thymus. J Biol Chem. 1979 May 10;254(9):3647–3651. [PubMed] [Google Scholar]
- Kawaichi M., Ueda K., Hayaishi O. Initiation of poly(ADP-ribosyl) histone synthesis by poly(ADP-ribose) synthetase. J Biol Chem. 1980 Feb 10;255(3):816–819. [PubMed] [Google Scholar]
- Kristensen T., Holtlund J. Purification of poly(ADP-ribose) polymerase from Ehrlich ascites tumor cells by chromatography on DNA-agarose. Eur J Biochem. 1976 Nov 15;70(2):441–446. doi: 10.1111/j.1432-1033.1976.tb11035.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Moss J., Manganiello V. C., Vaughan M. Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4424–4427. doi: 10.1073/pnas.73.12.4424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss J., Stanley S. J., Oppenheimer N. J. Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem. 1979 Sep 25;254(18):8891–8894. [PubMed] [Google Scholar]
- Moss J., Stanley S. J., Watkins P. A. Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem. 1980 Jun 25;255(12):5838–5840. [PubMed] [Google Scholar]
- Moss J., Vaughan M. Activation of adenylate cyclase by choleragen. Annu Rev Biochem. 1979;48:581–600. doi: 10.1146/annurev.bi.48.070179.003053. [DOI] [PubMed] [Google Scholar]
- Moss J., Vaughan M. Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3621–3624. doi: 10.1073/pnas.75.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss J., Vaughan M. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem. 1977 Apr 10;252(7):2455–2457. [PubMed] [Google Scholar]
- Ogata N., Ueda K., Hayaishi O. ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem. 1980 Aug 25;255(16):7610–7615. [PubMed] [Google Scholar]
- Ogata N., Ueda K., Kagamiyama H., Hayaishi O. ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J Biol Chem. 1980 Aug 25;255(16):7616–7620. [PubMed] [Google Scholar]
- Ohgushi H., Yoshihara K., Kamiya T. Bovine thymus poly(adenosine diphosphate ribose) polymerase. Physical properties and binding to DNA. J Biol Chem. 1980 Jul 10;255(13):6205–6211. [PubMed] [Google Scholar]
- Okayama H., Edson C. M., Fukushima M., Ueda K., Hayaishi O. Purification and properties of poly(adenosine diphosphate ribose) synthetase. J Biol Chem. 1977 Oct 25;252(20):7000–7005. [PubMed] [Google Scholar]
- Okazaki H., Niedergang C., Mandel P. Adenosine diphosphate ribosylation of histone H1 by purified calf thymus polyadenosine diphosphate ribose polymerase. Biochimie. 1980;62(2-3):147–157. doi: 10.1016/s0300-9084(80)80190-8. [DOI] [PubMed] [Google Scholar]
- Pappenheimer A. M., Jr Diphtheria toxin. Annu Rev Biochem. 1977;46:69–94. doi: 10.1146/annurev.bi.46.070177.000441. [DOI] [PubMed] [Google Scholar]
- Riquelme P. T., Burzio L. O., Koide S. S. ADP ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem. 1979 Apr 25;254(8):3018–3028. [PubMed] [Google Scholar]
- Tanaka Y., Hashida T., Yoshihara H., Yoshihara K. Bovine thymus poly(ADP-ribose) polymerase histone-dependent and Mg2+-dependent reaction. J Biol Chem. 1979 Dec 25;254(24):12433–12438. [PubMed] [Google Scholar]
- Tsopanakis C., Leeson E., Tsopanakis A., Shall S. Purification and properties of poly(ADP-ribose) polymerase from pig-thymus nuclei. Eur J Biochem. 1978 Oct;90(2):337–345. doi: 10.1111/j.1432-1033.1978.tb12610.x. [DOI] [PubMed] [Google Scholar]
- Ueda K., Kawaichi M., Okayama H., Hayaishi O. Poly(ADP-ribosy)ation of nuclear proteins. Enzymatic elongation of chemically synthesized ADP-ribose-histone adducts. J Biol Chem. 1979 Feb 10;254(3):679–687. [PubMed] [Google Scholar]
- Yoshihara K., Hashida T., Tanaka Y., Ohgushi H., Yoshihara H., Kamiya T. Bovine thymus poly(adenosine diphosphate ribose) polymerase. J Biol Chem. 1978 Sep 25;253(18):6459–6466. [PubMed] [Google Scholar]
