Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Aug;78(8):4818–4822. doi: 10.1073/pnas.78.8.4818

Interconverting mu and delta forms of the opiate receptor in rat striatal patches.

W D Bowen, S Gentleman, M Herkenham, C B Pert
PMCID: PMC320261  PMID: 6272275

Abstract

The binding of a radiolabeled "mu receptor" prototype opiate, dihydromorphine (H2morphine), and the binding of a "delta receptor" prototype, [D-Ala2,D-Leu5]enkephalin (D-Enk), to slide-mounted rat caudate slices were simultaneously compared quantitatively and visualized by autoradiography. Generally, D-Enk bound to opiate receptors distributed evenly throughout the entire striatum (type 2 pattern), whereas H2morphine labeled discrete islands or patches of receptors (type 1 pattern). In the presence of Mn2+ (3 mM) or other divalent cations, however, Na+ and GTP at 25 degrees C caused an increase in D-Enk binding at the expense of H2morphine binding at striatal opiate receptor patches. Thus, these conditions shifted D-Enk binding from an even pattern to one that included both an even and patchy distribution. These incubation conditions not only promoted D-Enk binding to striatal patches but also enabled the opiate receptor to regulate adenylate cyclase with the same (P less than 0.01) ligand selectivity pattern as that obtained by the displacement of D-Enk binding. The relative affinity of opiate receptors in striatal patches for opiate peptides, naloxone, and morphine appears to be a function of incubation conditions and coupling to adenylate cyclase and is not indicative of distinctly different opiate receptors. We postulate a three-state allosteric model consisting of mu agonist-, mu antagonists-, and adenylate cyclase-coupled delta-agonist-preferring states, whose equilibrium may be regulated by a sulfhydryl group mechanism.

Full text

PDF
4818

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birdsall N. J., Hulme E. C., Burgen A. The character of the muscarinic receptors in different regions of the rat brain. Proc R Soc Lond B Biol Sci. 1980 Feb 13;207(1166):1–12. doi: 10.1098/rspb.1980.0011. [DOI] [PubMed] [Google Scholar]
  2. Blume A. J. Interaction of ligands with the opiate receptors of brain membranes: regulation by ions and nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1713–1717. doi: 10.1073/pnas.75.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang K. J., Hazum E., Cuatrecasas P. Possible role of distinct morphine and enkephalin receptors in mediating actins of benzomorphan drugs (putative kappa and sigma agonists). Proc Natl Acad Sci U S A. 1980 Aug;77(8):4469–4473. doi: 10.1073/pnas.77.8.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Childers S. R., Creese I., Snowman A. M., Synder S. H. Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol. 1979 Apr 1;55(1):11–18. doi: 10.1016/0014-2999(79)90142-0. [DOI] [PubMed] [Google Scholar]
  5. Childers S. R., Snyder S. H. Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci. 1978 Aug 21;23(7):759–761. doi: 10.1016/0024-3205(78)90077-2. [DOI] [PubMed] [Google Scholar]
  6. Creese I., Pasternak G. W., Pert C. B., Snyder S. H. Discrimination by temperature of opiate agonist and antagonist receptor binding. Life Sci. 1975 Jun 15;16(12):1837–1842. doi: 10.1016/0024-3205(75)90287-8. [DOI] [PubMed] [Google Scholar]
  7. Gentleman S., Parenti M., Commissiong J. W., Neff N. H. Dopamine-activated adenylate cyclase of spinal cord: supersensitivity following transection of the cord. Brain Res. 1981 Apr 6;210(1-2):271–275. doi: 10.1016/0006-8993(81)90900-8. [DOI] [PubMed] [Google Scholar]
  8. Hazum E., Chang K. J., Cuatrecasas P. Role of disulphide and sulphydryl groups in clustering of enkephalin receptors in neuroblastoma cells. Nature. 1979 Dec 6;282(5739):626–628. doi: 10.1038/282626a0. [DOI] [PubMed] [Google Scholar]
  9. Herkenham M., Pert C. B. Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature. 1981 Jun 4;291(5814):415–418. doi: 10.1038/291415a0. [DOI] [PubMed] [Google Scholar]
  10. Jacobs S., Cuatrecasas P. The mobile receptor hypothesis and "cooperativity" of hormone binding. Application to insulin. Biochim Biophys Acta. 1976 May 21;433(3):482–495. doi: 10.1016/0005-2736(76)90275-3. [DOI] [PubMed] [Google Scholar]
  11. Kebabian J. W., Calne D. B. Multiple receptors for dopamine. Nature. 1979 Jan 11;277(5692):93–96. doi: 10.1038/277093a0. [DOI] [PubMed] [Google Scholar]
  12. Kosterlitz H. W., Leslie F. M., Waterfield A. A. Narcotic agonist and antagonist potencies of a homologous series of N-alkyl-norketobemidones measured by the guinea-pig ileum and mouse vas deferens methods. J Pharm Pharmacol. 1975 Feb;27(2):73–78. doi: 10.1111/j.2042-7158.1975.tb09412.x. [DOI] [PubMed] [Google Scholar]
  13. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  14. Martin W. R. Opioid antagonists. Pharmacol Rev. 1967 Dec;19(4):463–521. [PubMed] [Google Scholar]
  15. Matthews D. A., Cotman C., Lynch G. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res. 1976 Oct 8;115(1):1–21. doi: 10.1016/0006-8993(76)90819-2. [DOI] [PubMed] [Google Scholar]
  16. Moody T. W., Taylor D. P., Pert C. B. Effects of guanine nucleotides on CNS neuropeptide receptors. J Supramol Struct Cell Biochem. 1981;15(2):153–159. doi: 10.1002/jsscb.1981.380150206. [DOI] [PubMed] [Google Scholar]
  17. Pasternak G. W., Wilson H. A., Snyder S. H. Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol Pharmacol. 1975 May;11(3):340–351. [PubMed] [Google Scholar]
  18. Pert C. B., Snyder S. H. Correlation of opiate receptor affinity with analgetic effects of meperidine homologues. J Med Chem. 1976 Oct;19(10):1248–1250. doi: 10.1021/jm00232a015. [DOI] [PubMed] [Google Scholar]
  19. Pert C. B., Taylor D. P., Pert A., Herkenham M. A., Kent J. L. Biochemical and autoradiographic evidence for type 1 and type 2 opiate receptors. Adv Biochem Psychopharmacol. 1980;22:581–589. [PubMed] [Google Scholar]
  20. Rodbell M., Lin M. C., Salomon Y. Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J Biol Chem. 1974 Jan 10;249(1):59–65. [PubMed] [Google Scholar]
  21. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  22. Simon E. J., Groth J. Kinetics of opiate receptor inactivation by sulfhydryl reagents: evidence for conformational change in presence of sodium ions. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2404–2407. doi: 10.1073/pnas.72.6.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simonds W. F., Koski G., Streaty R. A., Hjelmeland L. M., Klee W. A. Solubilization of active opiate receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4623–4627. doi: 10.1073/pnas.77.8.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. U'Prichard D. C., Snyder S. H. Guanyl nucleotide influences on 3H-ligand binding to alpha-noradrenergic receptors in calf brain membranes. J Biol Chem. 1978 May 25;253(10):3444–3452. [PubMed] [Google Scholar]
  25. Wilkening D., Sabol S. L., Nirenberg M. Control of opiate receptor-adenylate cyclase interactions by calcium ions and guanosine-5'-triphosphate. Brain Res. 1980 May 12;189(2):459–466. doi: 10.1016/0006-8993(80)90105-5. [DOI] [PubMed] [Google Scholar]
  26. Williams L. T., Lefkowitz R. J. Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor. J Biol Chem. 1977 Oct 25;252(20):7207–7213. [PubMed] [Google Scholar]
  27. Wilson R. S., Rogers M. E., Pert C. B., Snyder S. H. Homologous N-alkylnorketobemidones. Correlation of receptor binding with analgesic potency. J Med Chem. 1975 Mar;18(3):240–242. doi: 10.1021/jm00237a003. [DOI] [PubMed] [Google Scholar]
  28. Young W. S., 3rd, Kuhar M. J. A new method for receptor autoradiography: [3H]opioid receptors in rat brain. Brain Res. 1979 Dec 28;179(2):255–270. doi: 10.1016/0006-8993(79)90442-6. [DOI] [PubMed] [Google Scholar]
  29. Zukin R. S., Gintzler A. R. Guanyl nucleotide interactions with opiate receptors in guinea pig brain and ileum. Brain Res. 1980 Mar 31;186(2):486–491. doi: 10.1016/0006-8993(80)90996-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES