Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2003 Jan 15;4(2):196–218. doi: 10.1007/s10162-002-2037-7

Changes in Cytochemistry of Sensory and Nonsensory Cells in Gentamicin-Treated Cochleas

Shun-ichi Imamura 1, Joe C Adams 2,
PMCID: PMC3202711  PMID: 12943373

Abstract

Effects of a single local dose of gentamicin upon sensory and nonsensory cells throughout the cochlea were assessed by changes in immunostaining patterns for a broad array of functionally important proteins. Cytochemical changes in hair cells, spiral ganglion cells, and cells of the stria vascularis, spiral ligament, and spiral limbus were found beginning 4 days post administration. The extent of changes in immunostaining varied with survival time and with cell type and was not always commensurate with the degree to which individual cell types accumulated gentamicin. Outer hair cells, types I and II fibrocytes of the spiral ligament, and fibrocytes in the spiral limbus showed marked decreases in immunostaining for a number of constituents. In contrast, inner hair cells, type III fibrocytes and root cells of the spiral ligament, cells of the stria vascularis, and interdental cells in the spiral limbus showed less dramatic decreases, and in some cases they showed increases in immunostaining. Results indicate that, in addition to damaging sensory cells, local application of gentamicin results in widespread and disparate disruptions of a variety of cochlear cell types. Only in the case of ganglion cells was it apparent that the changes in nonsensory cells were secondary to loss or damage of hair cells. These results indicate that malfunction of the ear following gentamicin treatment is widespread and far more complex than simple loss of sensory elements. The results have implications for efforts directed toward detecting, preventing, and treating toxic effects of aminoglycosides upon the inner ear.

Keywords: aminoglycoside toxicity, spiral ligament, organ of Corti, immunostaining

Full Text

The Full Text of this article is available as a PDF (978.2 KB).

Acknowledgements

This work was supported by NIH grant DC 03929. The authors are grateful to M.C. Liberman, J.B. Nadol, Jr., and W.F. Sewell for helpful comments on the manuscript.

References

  • 1.Adams JC. Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 1992;40:1457–1463. doi: 10.1177/40.10.1527370. [DOI] [PubMed] [Google Scholar]
  • 2.Anniko M, Thornell L-E, Virtanen I. Cytoskeletal organization of the human inner ear. Acta Otolaryngol. Suppl. (Stockh.) 1987;437:29–54. doi: 10.3109/00016488709099002. [DOI] [PubMed] [Google Scholar]
  • 3.Apicella S, Chen S, Bing R, Penniston JT, Llinas R, Hillman DE. Plasmalemmal ATPase calcium pump localizes to inner and outer hair bundles. Neuroscience. 1997;79:1145–1151. doi: 10.1016/S0306-4522(97)00035-3. [DOI] [PubMed] [Google Scholar]
  • 4.Bareggi R, Grill V, Narducci P, Zweyer M, Tesei L, Russolo M. Gentamicin ototoxicity: histological and ultrastructural alterations after transtympanic administration. Pharmacol. Res. 1990;22:635–644. doi: 10.1016/s1043-6618(05)80056-8. [DOI] [PubMed] [Google Scholar]
  • 5.Berggren D, Anniko M, Ramaekers F, Virtanen I. Intermediate filament proteins in the embryonic inner ear of mice under normal conditions and after exposure to ototoxic drugs. Acta Otolaryngol. 1990;109:57–65. doi: 10.3109/00016489009107415. [DOI] [PubMed] [Google Scholar]
  • 6.Blaustein MP. Calcium transport and buffering in neurons. Trends Neurosci. 1988;11:438–443. doi: 10.1016/0166-2236(88)90195-6. [DOI] [PubMed] [Google Scholar]
  • 7.Calvo JL, Carbonell AL, Boya J. Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res. 1991;566:333–336. doi: 10.1016/0006-8993(91)91720-L. [DOI] [PubMed] [Google Scholar]
  • 8.Cohn ES, Kelley PM. Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am. J Med. Genet. 1999;89:130–136. doi: 10.1002/(SICI)1096-8628(19990924)89:3<130::AID-AJMG3>3.3.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 9.Crouch JJ, Schulte BA. Expression of plasma membrane Ca-ATPase in the adult and developing gerbil cochlea. Hear. Res. 1995;92:112–119. doi: 10.1016/0378-5955(95)00201-4. [DOI] [PubMed] [Google Scholar]
  • 10.Curtis LM, Garg LC, Rarey KE. Ca(2+)-ATPases in the cochlear duct. Acta Otolaryngol. 1997;117:553–558. doi: 10.3109/00016489709113436. [DOI] [PubMed] [Google Scholar]
  • 11.Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J. Neurophysiol. 1978;41:365–383. doi: 10.1152/jn.1978.41.2.365. [DOI] [PubMed] [Google Scholar]
  • 12.Davis H, Deatherage BH, Rosenblut B, Fernandez C, Kimura RS, Smith CA. Modification of cochlear potentials produced by streptomycin poisoning and by extensive venous obstruction. Laryngoscope. 1958;68:596–627. doi: 10.1002/lary.5540680341. [DOI] [PubMed] [Google Scholar]
  • 13.DeGroot J CMJ, Huzing EH, Veldman JE. Early ultrastructure effect of gentamicin cochleotoxicity. Acta Otolaryngol. 1991;11:173–280. [Google Scholar]
  • 14.Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobwitz DM. Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res. 1991;560:139–148. doi: 10.1016/0006-8993(91)91224-O. [DOI] [PubMed] [Google Scholar]
  • 15.Fettiplace R, Ricci AJ, Hackney CM. Clues to the cochlear amplifier from the turtle ear. Trends Neurosci. 2001;24:169–175. doi: 10.1016/S0166-2236(00)01740-9. [DOI] [PubMed] [Google Scholar]
  • 16.Flock Å, Flock B, Ulfendahl M. Mechanisms of movement in outer hair cells and possible structural basis. Arch. Otorhinolaryngol. 1986;243:83–90. doi: 10.1007/BF00453755. [DOI] [PubMed] [Google Scholar]
  • 17.Forge A, Fradis M. Structural abnormalities in the stria vascularis following chronic gentamicin treatment. Hear. Res. 1985;20:233–244. doi: 10.1016/0378-5955(85)90028-0. [DOI] [PubMed] [Google Scholar]
  • 18.Forge A, Schacht J. Aminoglycoside antibiotics. Audiol. Neurootol. 2000;5:3–22. doi: 10.1159/000013861. [DOI] [PubMed] [Google Scholar]
  • 19.Furuta H, Luo L, Hepler K, Ryan AF. Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear. Res. 1998;123:10–26. doi: 10.1016/S0378-5955(98)00091-4. [DOI] [PubMed] [Google Scholar]
  • 20.Gallanti A, Prelle A, Moggio M, Ciscato P, Checcarelli N, Sciacco M, Comini A, Scarato G. Desmin and vimentin as markers of regeneration in muscle diseases. Acta Neuropathol. 1992;85:88–92. doi: 10.1007/BF00304637. [DOI] [PubMed] [Google Scholar]
  • 21.Gao WQ. Role of neurotrophins and lectins in prevention of ototoxicity. Ann. N. Y. Acad. Sci. 1999;884:312–327. doi: 10.1111/j.1749-6632.1999.tb08651.x. [DOI] [PubMed] [Google Scholar]
  • 22.Garetz SL, Altschuler RA. Attenuation of gentamicin ototoxicity by glutathione in the guinea pig in vivo. Hear. Res. 1994;77:81–87. doi: 10.1016/0378-5955(94)90255-0. [DOI] [PubMed] [Google Scholar]
  • 23.Hawkins JE Jr, Johnsson LG. Histopathology of cochlear and vestibular ototoxicity in laboratory animals. In: Lerner SA, Mats GJ, Hawkins Jr JE, editors. Aminoglycoside Ototoxicity. Boston: Little, Brown; 1981. pp. 175–195. [Google Scholar]
  • 24.Hsu CJ, Nomura Y. Carbonic anhydrase activity in the inner ear. Acta Otolaryngol. Suppl. 1985;418:1–42. [PubMed] [Google Scholar]
  • 25.Husmann KR, Morgan AS, Girod DA, Durham D. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells. Hear. Res. 1998;125:109–119. doi: 10.1016/S0378-5955(98)00137-3. [DOI] [PubMed] [Google Scholar]
  • 26.Ichimiya I, Adams JC, Kimura RS. Immunolocalization of Na+, K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol. (Stockh.) 1994a;114:167–176. doi: 10.3109/00016489409126037. [DOI] [PubMed] [Google Scholar]
  • 27.Ichimiya I, Adams JC, Kimura RS. Changes in immunostaining of cochleas with experimentally induced endolymphatic hydrops. Ann. Otol. Rhinol. Laryngol. 1994b;103:457–468. doi: 10.1177/000348949410300607. [DOI] [PubMed] [Google Scholar]
  • 28.Imamura S, Adams JC. Immunolocalization of peptide 19 and other calcium-binding proteins in the guinea pig cochlea. Anat. Embryol. 1996;194:407–418. doi: 10.1007/BF00198543. [DOI] [PubMed] [Google Scholar]
  • 29.Kelsell DP, Dunlop J, Hodgins MB. Human diseases: clues to cracking the connexin code? Trends Cell. Biol. 2001;11:2–6. doi: 10.1016/S0962-8924(00)01866-3. [DOI] [PubMed] [Google Scholar]
  • 30.Kiang NY, Moxon EA, Levine RA. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight J, editors. Ciba Foundation Symposium on Sensorineural Hearing Loss. London: Churchhill; 1970. pp. 241–273. [DOI] [PubMed] [Google Scholar]
  • 31.Kiang NY, Liberman MC, Levine RA. Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann. Otol. Rhinol. Laryngol. 1976;85:752–768. doi: 10.1177/000348947608500605. [DOI] [PubMed] [Google Scholar]
  • 32.Kikuchi T, Kimura RS, Adams JC. Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis. Anat. Embryol. 1995;191:101–118. doi: 10.1007/BF00186783. [DOI] [PubMed] [Google Scholar]
  • 33.Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams J. Gap junction systems in the mammalian cochlea. Brain Res. Brain Res. Rev. 2000;32:163–166. doi: 10.1016/S0165-0173(99)00076-4. [DOI] [PubMed] [Google Scholar]
  • 34.Kimura RS, Iverson NA, Southard RE. Selective lesions of the vestibular labyrinth. Ann. Otol. Rhinol. Laryngol. 1988;97:577–584. doi: 10.1177/000348948809700602. [DOI] [PubMed] [Google Scholar]
  • 35.Kimura RS, Nye CL, Southard RE. Normal and pathologic features of the limbus spiralis and its functional significance. Am. J. Otolaryngol. 1990;11:99–111. doi: 10.1016/0196-0709(90)90006-h. [DOI] [PubMed] [Google Scholar]
  • 36.Kimura RS, Lee K-S, Nye CL, Trehey JA. Effects of systemic and lateral semicircular canal administration of aminoglycosides on normal and hydropic inner ears. Acta Otolaryngol. (Stockh.) 1991;111:1021–1030. doi: 10.3109/00016489109100751. [DOI] [PubMed] [Google Scholar]
  • 37.Komune S, Snow JB. Nature of the endocochlear dc potential kanamicin-poisoned guinea pigs. Arch. Otolaryngol. 1982;108:334–338. doi: 10.1001/archotol.1982.00790540006002. [DOI] [PubMed] [Google Scholar]
  • 38.Konishi T. Effects of local application of ototoxic antibiotics on cochlear potential in guinea pigs. Acta Otolaryngol. 1979;88:41–46. doi: 10.3109/00016487909137138. [DOI] [PubMed] [Google Scholar]
  • 39.Kuno M, Gardner P. Ion channels activated by inositol 1,4,5-triphosphate inplasma membrane of human T-lymphocytes. Nature. 1987;326:301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  • 40.Mendelsohn M, Katzenberg I. The effect of kanamicin on the cation content of the endolymph. Laryngoscope. 1972;82:397–402. doi: 10.1288/00005537-197203000-00006. [DOI] [PubMed] [Google Scholar]
  • 41.Nakashima T, Teranishi M, Hibi T, Kobayashi M, Umemura M. Vestibular and cochlear toxicity of aminoglycosides—a review. Acta Otolaryngol. 2000;120:904–911. doi: 10.1080/00016480050218627. [DOI] [PubMed] [Google Scholar]
  • 42.Oesterle EC, Sarthy PV, Rubel EW. Intermediate filaments in the inner ear of normal and experimentally damaged guinea pigs. Hear. Res. 1990;47:1–16. doi: 10.1016/0378-5955(90)90162-I. [DOI] [PubMed] [Google Scholar]
  • 43.Okamura H-O, Sugai N, Suzuki K, Ohtani I. Enzyme-histochemical localization of carbonic anhydrase in the inner ear of the guinea pig and several improvements of the technique. Histochem. Cell Biol. 1996;106:425–430. doi: 10.1007/s004180050060. [DOI] [PubMed] [Google Scholar]
  • 44.Oshima T, Ikeda K, Furukawa M, Takasaka T. Alternatively spliced isoforms of the Na+/Ca2+ exchanger in the guinea pig cochlea. Biochem. Biophys. Res. Commun. 1997;233:737–741. doi: 10.1006/bbrc.1997.6533. [DOI] [PubMed] [Google Scholar]
  • 45.Pack AK, Slepecky NB. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear. Res. 1995;91:119–135. doi: 10.1016/0378-5955(95)00173-5. [DOI] [PubMed] [Google Scholar]
  • 46.Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto A, Walton K, Ylikoski J. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J. Neurosci. 2000;20:43–50. doi: 10.1523/JNEUROSCI.20-01-00043.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Quick C. Ototoxic interactions between aminoglycosides and loop diuretics in man. In: Lerner SA, Mats GJ, Hawkins Jr JE, editors. Aminoglycoside Ototoxicity. Boston: Little, Brown; 1981. pp. 373–384. [Google Scholar]
  • 48.Rabie A, Thomasset M, Legrand CC. Immunocytochemical detection of calcium-binding protein in the cochlear and vestibular hair cells of the rat. Cell. Tissue Res. 1983;232:691–696. doi: 10.1007/BF00216440. [DOI] [PubMed] [Google Scholar]
  • 49.Ryan AF, Watts AG. Expression of mRNA encoding α and β subunit isoforms of the Na+,K+-ATPase in the rat cochlea. Mol. Cell. Neurosci. 1991;2:179–187. doi: 10.1016/1044-7431(91)90011-c. [DOI] [PubMed] [Google Scholar]
  • 50.Santi PA, Ruggero MA, Nelson DA, Turner CW. Kanamycin and bumetanide ototoxicity: anatomical, physiological and behavioral correlates. Hear. Res. 1982;7:261–279. doi: 10.1016/0378-5955(82)90040-5. [DOI] [PubMed] [Google Scholar]
  • 51.Schmiedt RA, Zwislocki JJ, Hamernik RP. Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. J. Neurophysiol. 1980;43:1367–1389. doi: 10.1152/jn.1980.43.5.1367. [DOI] [PubMed] [Google Scholar]
  • 52.Schulte BA, Adams JC. Distribution of immunoreactive Na+, K+-ATPase in gerbil cochlea. J. Histochem. Cytochem. 1989a;37:127–134. doi: 10.1177/37.2.2536055. [DOI] [PubMed] [Google Scholar]
  • 53.Schulte BA, Adams JC. Immunohistochemical localization of vimentin in the gerbil inner ear. J. Histochem. Cytochem. 1989b;37:1787–1797. doi: 10.1177/37.12.2685109. [DOI] [PubMed] [Google Scholar]
  • 54.Schulte BA. Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells, neurons and flbrocytes in the adult and developing inner ear. Hear. Res. 1993;65:262–273. doi: 10.1016/0378-5955(93)90219-Q. [DOI] [PubMed] [Google Scholar]
  • 55.Sha SH, Zajic G, Epstein CJ, Schacht J. Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss. Audiol. Neurootol. 2001;6:117–123. doi: 10.1159/000046818. [DOI] [PubMed] [Google Scholar]
  • 56.Shi S-R, Tandon AK, Haussmann RRM, Kalra KL, Taylor CR. Immunohistochemical study of intermediate filament proteins on routinely processed celloidin embedded human temporal bone sections by using a new technique for antigen retrieval. Acta Otolaryngol. (Stockh.) 1993;113:48–54. doi: 10.3109/00016489309135766. [DOI] [PubMed] [Google Scholar]
  • 57.Sinswat P, Wu WJ, Sha SH, Schacht J. Protection from ototoxicity of intraperitoneal gentamicin in guinea pig. Kidney Int. 2000;58:2525–2532. doi: 10.1046/j.1523-1755.2000.00437.x. [DOI] [PubMed] [Google Scholar]
  • 58.Slepecky NB, Ulfendahl M. Evidence for calcium-binding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear. Res. 1993;70:73–84. doi: 10.1016/0378-5955(93)90053-4. [DOI] [PubMed] [Google Scholar]
  • 59.Song BB, Sha SH, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic. Biol. Med. 1998;25:189–195. doi: 10.1016/S0891-5849(98)00037-9. [DOI] [PubMed] [Google Scholar]
  • 60.Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear. Res. 1991;56:53–64. doi: 10.1016/0378-5955(91)90153-Z. [DOI] [PubMed] [Google Scholar]
  • 61.Street V, McKee–Johnson J, Fonseca R, Tempel B, Noben–Trauth K. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat. Genet. 1998;19:390–394. doi: 10.1038/1284. [DOI] [PubMed] [Google Scholar]
  • 62.SundarRaj N, Rizzo JD, Anderson SC, Gesitto JP. Expression of vimentin by rabbit corneal epithelial cells during wound repair. Cell Tissue Res. 1992;267:347–356. doi: 10.1007/BF00302973. [DOI] [PubMed] [Google Scholar]
  • 63.Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Ther. 2000;7:1046–1054. doi: 10.1038/sj.gt.3301180. [DOI] [PubMed] [Google Scholar]
  • 64.Ten Cate WF, Curtis LM, Rarey KE. Na+,K+-ATPase α and β subunit isoforms distribution in the rat cochlea and vestibular tissues. Hear. Res. 1994;75:151–160. doi: 10.1016/0378-5955(94)90066-3. [DOI] [PubMed] [Google Scholar]
  • 65.Takahashi K, Kitamura K. A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem. Biophys. Res. Commun. 1999;261:773–778. doi: 10.1006/bbrc.1999.1102. [DOI] [PubMed] [Google Scholar]
  • 66.Takeuchi S, Wangemann P. Aminoglycoside antibiotics inhibit maxi-K+ channel in single isolated cochlear efferent nerve terminal. Hear. Res. 1993;67:13–19. doi: 10.1016/0378-5955(93)90227-R. [DOI] [PubMed] [Google Scholar]
  • 67.Usami S-I, Hozawa J, Shinkawa H, Saito S-I, Matsubara A, Fujita S. Immunocytochemical localization of intermediate filament in the guinea pig vestibular periphery with special reference to their alteration after ototoxic drug administration. Acta Otolaryngol. Suppl. (Stockh.) 1993;506:7–13. doi: 10.3109/00016489309130231. [DOI] [PubMed] [Google Scholar]
  • 68.Wanamaker HH, Slepecky NB, Cefaratti LK, Ogata Y. Comparison of vestibular and cochlear ototoxicity from transtympanic streptomycin administration. Am. J. Otol. 1999;20:457–464. [PubMed] [Google Scholar]
  • 69.Wersall J. Ototoxic antibiotics: a review. Acta Otolaryngol. Suppl. 1995;519:26–29. doi: 10.3109/00016489509121866. [DOI] [PubMed] [Google Scholar]
  • 70.Worley PF, Baraban JM, Colvin JS, Snyder SH. Inositol triphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature. 1987;325:159–161. doi: 10.1038/325159a0. [DOI] [PubMed] [Google Scholar]
  • 71.Xuan W, Dong M. Effects of compound injection of Pyrola rotundifolia. L. and Astragalus membranaceus Bge on experimental guinea pigs' gentamicin ototoxicity. Ann. Otol. Rhinol. Laryngol. 1995;104:374–380. doi: 10.1177/000348949510400507. [DOI] [PubMed] [Google Scholar]
  • 72.Yokota M, Niizato T, Inouye S, Kitasato I. Effect of glucarolactam on ototoxicity of aminoglycoside antibiotics in guinea-pigs. Drugs Exp. Clin. Res. 1989;15:261–272. [PubMed] [Google Scholar]
  • 73.Yoshihara T, Igarashi M. Cytochemical localization of Ca++-ATPase activity in the lateral cochlear wall of the guinea pig. Arch. Otorhinolaryngol. 1987;243:395–400. doi: 10.1007/BF00464650. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES