Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2002 Dec 17;4(2):164–175. doi: 10.1007/s10162-002-2056-4

Effects of Chronic Furosemide Treatment and Age on Cell Division in the Adult Gerbil Inner Ear

H Lang 1, B A Schulte 1,2, R A Schmiedt 1,
PMCID: PMC3202712  PMID: 12943371

Abstract

Atrophy of the stria vascularis and spiral ligament and an associated decrease in the endocochlear potential (EP) are significant factors in age-related hearing loss (presbyacusis). To model this EP decrease, furosemide was delivered into the round-window niche of young adult gerbils by osmotic pump for seven days, chronically reducing the EP by 30–40 mV. Compound action potential (CAP) thresholds were correspondingly reduced by 30–40 dB SPL at high frequencies. Two weeks after withdrawal of furosemide, the treated ears showed an EP recovery of up to 20–30 mV along with a similar recovery of CAP thresholds. The influence of cell division on furosemide-induced and age-related decline of the EP was examined using a mitotic tracer, bromodeoxyuridine (BrdU). Cell proliferation was examined in three groups: young control, furosemide-treated, and aged cochleas. Sections immunostained for BrdU were bleached with H2O2 to eliminate ambiguities with melanin pigment in the inner ear. Cell types positively labeled for BrdU in all three groups included Schwann cells in Rosenthal's canal; glial cells in the osseous spiral lamina; fibrocytes in the limbus, sacculus, and spiral ligament (SL); epithelial cells in Reissner's and round-window membranes; intermediate cells in the stria vascularis; and vascular endothelial cells. Quantitative analysis showed that the mean number of BrdU-positive (BrdU+) intermediate cells in the stria did not differ significantly among the three groups. In contrast, there was a significant increase of BrdU + fibrocytes in the SL of furosemide-treated animals as compared to the young control group. Moreover, there was a significant decrease in labeled fibrocytes in the aged versus the young ears, particularly among the type II and type IV subtypes. The results suggest that the increased fibrocyte turnover in the SL after furosemide treatment may be related to the recovery of EP and CAP thresholds, supporting the hypothesis that fibrocyte proliferation may be essential for maintaining the EP and cochlear function in normal and damaged cochleas. Moreover, the decreased turnover of SL fibrocytes with age may be a contributing factor underlying the lateral wall pathology and consequent EP loss that often accompanies presbyacusis.

Keywords: cochlea, furosemide, BrdU, aging, fibrocytes, spiral ligament, endocochlear potential

Full Text

The Full Text of this article is available as a PDF (418.0 KB).

Acknowledgements

The authors thank Boo Schmiedt and Nancy Smythe for their technical assistance. This work was supported by NIH/NIA RO1 AG/14748 (RAS) and NIH/NIDCD R01 DC00713 (BAS).

References

  • 1.Conlee JW, Gerity LC, Bennett ML. Ongoing proliferation of melanocytes in the stria vascularis of adult guinea pigs. Hear. Res. 1994;79:115–122. doi: 10.1016/0378-5955(94)90133-3. [DOI] [PubMed] [Google Scholar]
  • 2.Crouch JJ, Sakaguchi N, Lytle C, Schulte BA. Immunohistochemical localization of the Na–K–Cl co-transporter (NKCC1) in the gerbil inner ear. J. Histochem. Cytochem. 1997;45:773–778. doi: 10.1177/002215549704500601. [DOI] [PubMed] [Google Scholar]
  • 3.Forge A. Observations on the stria vascularis of the guinea pig cochlea and the changes resulting from the administration of the diuretic furosemide. Clin. Otolaryngol. 1976;1:211–219. doi: 10.1111/j.1365-2273.1976.tb00879.x. [DOI] [PubMed] [Google Scholar]
  • 4.Franz P, Aharinejad S, Firbas W. Melanocytes in the modiolus of the guinea pig cochlea. Acta Otolaryngol. 1990;109:221–227. doi: 10.3109/00016489009107437. [DOI] [PubMed] [Google Scholar]
  • 5.Gratacap B, Charachon R, Stoebner P. Results of an ultrastructural study comparing stria vascularis with organ of Corti in guinea pigs treated with kanamycin. Acta Otolaryngol. (Stockh.) 1985;99:339–342. doi: 10.3109/00016488509108920. [DOI] [PubMed] [Google Scholar]
  • 6.Gratton MA, Wright CG. Hyperpigmentation of chinchilla stria vascularis following acoustic trauma. Pigment. Cell. Res. 1992;5:30–37. doi: 10.1111/j.1600-0749.1992.tb00779.x. [DOI] [PubMed] [Google Scholar]
  • 7.Gratton MA, Schmiedt RA, Schulte BA. Age-related decreases in the endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear. Res. 1996;102:181–190. doi: 10.1016/S0378-5955(96)00130-X. [DOI] [PubMed] [Google Scholar]
  • 8.Gratton MA, Schulte BA, Smythe NM. Quantification of the stria vascularis and strial capillary areas in quiet-reared young and aged gerbils. Hear. Res. 1997;114(1-2):1–9. doi: 10.1016/S0378-5955(97)00025-7. [DOI] [PubMed] [Google Scholar]
  • 9.Hall RD. Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear. Res. 1990;45:123–136. doi: 10.1016/0378-5955(90)90188-U. [DOI] [PubMed] [Google Scholar]
  • 10.Hall RD, Massengill JL. The number of primary auditory afferents in the rat. Hear. Res. 1997;103:75–84. doi: 10.1016/S0378-5955(96)00166-9. [DOI] [PubMed] [Google Scholar]
  • 11.Hellstrom LI, Schmiedt RA. Compound action potential input/output functions in young and quiet-aged gerbils. Hear. Res. 1990;50:163–174. doi: 10.1016/0378-5955(90)90042-N. [DOI] [PubMed] [Google Scholar]
  • 12.Hellstrom LI, Schmiedt RA. Measures of tuning and suppression in single-fiber and whole-nerve responses in young and quiet-aged gerbils. J. Acoust. Soc. Am. 1996;100:3275–3285. doi: 10.1121/1.417211. [DOI] [PubMed] [Google Scholar]
  • 13.Hequembourg S, Liberman MC. Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J. Assoc. Res. Otolaryngol. 2001;02:118–129. doi: 10.1007/s101620010075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hilding DA, Ginzberg RD. Pigmentation of the stria vascularis. The contribution of neural crest melanocytes. Acta Otolaryngol. (Stockh.) 1977;84:24–37. doi: 10.3109/00016487709123939. [DOI] [PubMed] [Google Scholar]
  • 15.Ikeda K, Oshima T, Hidaka H, Takasaka T. Molecular and clinical implications of loop diuretic ototoxicity. Hear. Res. 1977;107:1–8. doi: 10.1016/S0378-5955(97)00009-9. [DOI] [PubMed] [Google Scholar]
  • 16.Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat. Embryol. (Berl.) 1995;191:101–118. doi: 10.1007/BF00186783. [DOI] [PubMed] [Google Scholar]
  • 17.Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC. Gap junction systems in the mammalian cochlea. Brain. Res. Brain. Res. Rev. 2000;32:163–166. doi: 10.1016/S0165-0173(99)00076-4. [DOI] [PubMed] [Google Scholar]
  • 18.La Ferriere KA, Arenberg IK, Hawkins JE, Johnsson LG. Melanocytes of the vestibular labyrinth and their relationship to the microvasculature. Ann. Otol. Rhinol. Laryngol. 1974;83:685–694. doi: 10.1177/000348947408300518. [DOI] [PubMed] [Google Scholar]
  • 19.Lang H, Bever MM, Fekete DM. Cell proliferation and cell death in the developing chick inner ear: spatial and temporal patterns. J. Comp. Neurol. 2000;417:205–220. doi: 10.1002/(SICI)1096-9861(20000207)417:2<205::AID-CNE6>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  • 20.Li LX, Crotty KA, Kril JJ, Palmer AA, McCarthy SW. Method of melanin bleaching in MIB1-Ki67 immunostaining of pigmented lesions: A quantitative evaluation in malignant melanomas. Histochem. J. 1999;131:237–240. doi: 10.1023/a:1003528507828. [DOI] [PubMed] [Google Scholar]
  • 21.Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, Suzuki M, Furukawa M, Kawase T, Zheng Y, Ogura M, Asada Y, Watanabe K, Yamanaka H, Gotoh S, Nishi–Takeshima M, Sugimoto T, Kikuchi T, Takasaka T, Noda T. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness [see comments]. Science. 1999;285:1408–1411. doi: 10.1126/science.285.5432.1408. [DOI] [PubMed] [Google Scholar]
  • 22.Müller M. The cochlear place–frequency map of the adult and developing Mongolian gerbil. Hear Res. 1996;94:148–156. doi: 10.1016/0378-5955(95)00230-8. [DOI] [PubMed] [Google Scholar]
  • 23.Okamura H, Schmiedt RA, Spicer S, Schulte B. Morphologic and physiologic changes in gerbil cochleas induced by chronic exposure to furosemide. Assoc. Res. Otolaryngol. Abstr. 2000;23:126. [Google Scholar]
  • 24.Roberson D, Rubel EW. Cell division in the gerbil cochlea after acoustic trauma. Am. J. Otol. 1994;15(1):28–34. [PubMed] [Google Scholar]
  • 25.Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. Suppl. (Stockh.) 1967;220:1–44. [PubMed] [Google Scholar]
  • 26.Rybak LP. Furosemide ototoxicity: clinical and experimental aspects. Laryngoscope. 1985;95:1–14. doi: 10.1288/00005537-198509010-00001. [DOI] [PubMed] [Google Scholar]
  • 27.Sakaguchi N, Crouch JJ, Lytle C, Schulte BA. Na–K–Cl cotransporter expression in the developing and senescent gerbil cochlea. Hear. Res. 1998;118:114–122. doi: 10.1016/S0378-5955(98)00022-7. [DOI] [PubMed] [Google Scholar]
  • 28.Savin C. The blood vessels and pigmentary cells of the inner ear. Ann. Otol. Rhinol. Laryngol. 1965;74:611–623. doi: 10.1177/000348946507400303. [DOI] [PubMed] [Google Scholar]
  • 29.Schmiedt RA. Does the aging cochlea need a jump-start? In: Verrillo RT, editor. Sensory Research Multimodal Perspectives. New York: Erlbaum and Associates; 1993. pp. 91–103. [Google Scholar]
  • 30.Schmiedt RA. Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea. Hear. Res. 1996;102:125–132. doi: 10.1016/S0378-5955(96)00154-2. [DOI] [PubMed] [Google Scholar]
  • 31.Schmiedt RA, Zwislocki JJ. Comparison of sound-transmission and cochlear-microphonic characteristics in Mongolian gerbil and guinea pig. J. Acoust. Soc. Am. 1997;61:133–149. doi: 10.1121/1.381283. [DOI] [PubMed] [Google Scholar]
  • 32.Schmiedt RA, Schulte BA. Physiologic and histopathologic changes in quiet- and noise-aged gerbil cochleas. In: Dancer A, Henderson D, Salvi R, Hamernik R, editors. Noise Induced Hearing Loss. St. Louis, MO: Mosby Yearbook Inc.; 1992. pp. 246–256. [Google Scholar]
  • 33.Schmiedt RA, Lang H. Presbyacusic thresholds: a consequence of an energy-starved cochlear amplifier. Assoc. Res. Otolaryngol. Abstr. 2001;24:148. [Google Scholar]
  • 34.Schmiedt RA, Mills JH, Adams JC. Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise. Hear. Res. 1990;45:221–236. doi: 10.1016/0378-5955(90)90122-6. [DOI] [PubMed] [Google Scholar]
  • 35.Schmiedt RA, Mills JH, Boettcher FA. Age-related loss of activity of auditory-nerve fibers. J. Neurophysiol. 1996;76:799–803. doi: 10.1152/jn.1996.76.4.2799. [DOI] [PubMed] [Google Scholar]
  • 36.Schmiedt RA, Spicer SS, Schulte BA. Morphologic and physiologic changes in gerbil cochleas exposed to chronic infiltration of furosemide into perilymph. Assoc. Res. Otolaryngol. Abstr. 1999;22:134. [Google Scholar]
  • 37.Schmiedt RA, Lang H, Okamura H. Model of metabolic presbyacusis: Neural responses under condition of chronically-low endocochlear potentials induced with furosemide. Assoc. Res. Otolaryngol. Abstr. 2000;23:282. [Google Scholar]
  • 38.Schmiedt RA, Lang H, Okamura H, Schulte BA. Effects of furosemide applied chronically to the round window: a model of metabolic presbyacusis. J. Neurosci. 2002;22:9643–9650. doi: 10.1523/JNEUROSCI.22-21-09643.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Schuknecht HF, Gacek MR. Cochlear pathology in presbyacusis. Ann. Otol. Rhinol. Laryngol. 1993;102:1–16. doi: 10.1177/00034894931020S101. [DOI] [PubMed] [Google Scholar]
  • 40.Schulte BA, Adams JC. Distribution of immunoreactive Na+,K+–ATPase in gerbil cochlea. J. Histochem. Cytochem. 1989;37:127–134. doi: 10.1177/37.2.2536055. [DOI] [PubMed] [Google Scholar]
  • 41.Schulte BA, Schmiedt RA. Lateral wall Na,K–ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear. Res. 1992;61:35–46. doi: 10.1016/0378-5955(92)90034-K. [DOI] [PubMed] [Google Scholar]
  • 42.Sewell W. The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hear. Res. 1984;14:305–314. doi: 10.1016/0378-5955(84)90057-1. [DOI] [PubMed] [Google Scholar]
  • 43.Shaddock LC, Wright CG, Hamernik RP. A morphometric study of microvascular pathology following experimental rupture of Reissner's membrane. Hear. Res. 1985;20:119–129. doi: 10.1016/0378-5955(85)90163-7. [DOI] [PubMed] [Google Scholar]
  • 44.Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear. Res. 1991;56:53–64. doi: 10.1016/0378-5955(91)90153-Z. [DOI] [PubMed] [Google Scholar]
  • 45.Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear. Res. 1996;100:80–100. doi: 10.1016/0378-5955(96)00106-2. [DOI] [PubMed] [Google Scholar]
  • 46.Spicer SS, Gratton MA, Schulte BA. Expression patterns of ion transport enzymes in spiral ligament fibrocytes change in relation to strial atrophy in the aged gerbil cochlea. Hear. Res. 1997;111:93–102. doi: 10.1016/S0378-5955(97)00097-X. [DOI] [PubMed] [Google Scholar]
  • 47.Takahashi T, Kimura RS. The ultrastructure of the spiral ligament in the Rhesus monkey. Acta Otolaryngol. (Stockh.) 1970;69:46–60. doi: 10.3109/00016487009123335. [DOI] [PubMed] [Google Scholar]
  • 48.Wolff D. Melanin in inner ear. Arch. Otolaryngol. 1931;14:195–211. [Google Scholar]
  • 49.Yamashita H, Shimogori H, Sugahara K, Takahashi M. Cell proliferation in spiral ligament of mouse cochlea damaged by dihydrostreptomycin sulfate. Acta Otolaryngol. 1999;119:322–325. doi: 10.1080/00016489950181323. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES