Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2003 Jan 21;4(2):276–290. doi: 10.1007/s10162-002-3018-6

Disruption of Lateral Efferent Pathways: Functional Changes in Auditory Evoked Responses

Colleen G Le Prell 1,, Susan E Shore 1, Larry F Hughes 2, Sanford C Bledsoe Jr 1
PMCID: PMC3202720  PMID: 12943378

Abstract

The functional consequences of selectively lesioning the lateral olivocochlear efferent system in guinea pigs were studied. The lateral superior olive (LSO) contains the cell bodies of lateral olivocochlear neurons. Melittin, a cytotoxic chemical, was injected into the brain stem using stereotaxic coordinates and near-field evoked potentials to target the LSO. Brain stem histology revealed discrete damage to the LSO following the injections. Functional consequences of this damage were reflected in depressed amplitude of the compound action potential of the eighth nerve (CAP) following the lesion. Threshold sensitivity and N1 latencies were relatively unchanged. Onset adaptation of the cubic distortion product otoacoustic emission (DPOAE) was evident, suggesting a reasonably intact medial efferent system. The present results provide the first report of functional changes induced by isolated manipulation of the lateral efferent pathway. They also confirm the suggestion that changes in single-unit auditory nerve activity after cutting the olivocochlear bundle are probably a consequence of disrupting the more lateral of the two olivocochlear efferent pathways.

Keywords: lateral superior olive, guinea pig, olivocochlear, compound action potential, distortion product otoacoustic emission

Full Text

The Full Text of this article is available as a PDF (370.1 KB).

Acknowledgements

Support was provided by NIH-NIDCD P01-DC-00078 (SCB) and F32-DC-00367 (CGL). Acetylcholinesterase immunolabeling was conducted at Eaton–Peabody Laboratory; cochlear tissue preparation was done in R. Altschuler's laboratory; D. Dolan, H. Drewior, C. Ellinger, R. Griffith, K. Halsey, E. Macpherson, J. McLaren, D. Payer, and L. Pierchala provided technical assistance. We thank D. Dolan, M. C. Liberman, and J. Middlebrooks for comments on an earlier version of the paper.

References

  • 1.Albuquerque EX, Pereira EF, Braga MF, Matsubayashi H, Alkondon M. Neuronal nicotinic receptors modulate synaptic function in the hippocampus and are sensitive to blockade by the convulsant strychnine and by the anti-Parkinson drug amantadine. Toxicol. Lett. 1998;102–103:211–218. doi: 10.1016/S0378-4274(98)00309-9. [DOI] [PubMed] [Google Scholar]
  • 2.Aschoff A, Ostwald J. Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J. Comp. Neurol. 1987;264:56–72. doi: 10.1002/cne.902640106. [DOI] [PubMed] [Google Scholar]
  • 3.Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 1997;156:197–211. doi: 10.1007/s002329900201. [DOI] [PubMed] [Google Scholar]
  • 4.Bledsoe Jr SC, Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA. Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res. 1990;517:189–194. doi: 10.1016/0006-8993(90)91025-C. [DOI] [PubMed] [Google Scholar]
  • 5.Bobbin RP, Konishi T. Acetylcholine mimics crossed olivocochlear bundle stimulation. Nat. New Biol. 1971;231:222–223. doi: 10.1038/newbio231222a0. [DOI] [PubMed] [Google Scholar]
  • 6.Bobbin RP, Konishi T. Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction. Acta Otolaryngol. (Stockh.) 1974;77:56–65. doi: 10.3109/00016487409124598. [DOI] [PubMed] [Google Scholar]
  • 7.Bodian D, Gucer G. Denervation study of synapses of organ of Corti of old world monkeys. J. Comp. Neurol. 1980;192:785–796. doi: 10.1002/cne.901920411. [DOI] [PubMed] [Google Scholar]
  • 8.Burgess BJ, Adams JC, Nadol Jr JB. Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig. Hear. Res. 1997;108:74–82. doi: 10.1016/S0378-5955(97)00040-3. [DOI] [PubMed] [Google Scholar]
  • 9.Charlet de Sauvage R, da Costa DL, Erre JP, Aran JM. Changes in CM and CAP with sedation and temperature in the guinea pig: facts and interpretation. Hear. Res. 1996;102:15–27. doi: 10.1016/S0378-5955(96)00137-2. [DOI] [PubMed] [Google Scholar]
  • 10.d'Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R. Effects of a dopaminergic agonist in the guinea pig cochlea. Hear. Res. 1995a;90:202–211. doi: 10.1016/0378-5955(95)00167-5. [DOI] [PubMed] [Google Scholar]
  • 11.d'Aldin C, Eybalin M, Puel JL, Charachon G, Ladrech S, Renard N, Pujol R. Synaptic connections and putative functions of the dopaminergic innervation of the guinea pig cochlea. Eur. Arch. Otorhinolaryngol. 1995b;252:270–274. doi: 10.1007/BF00185388. [DOI] [PubMed] [Google Scholar]
  • 12.Desmedt JE, Monaco P. Mode of action of the efferent olivo-cochlear bundle on the inner ear. Nature. 1961;192:1263–1265. doi: 10.1038/1921263a0. [DOI] [PubMed] [Google Scholar]
  • 13.Dolan DF, Yamasoba T, Leonova E, Beyer LA, Raphael Y. Morphological and physiological effects of long duration infusion of strychnine into the organ of Corti. J Neurocytol. 1999;28:197–206. doi: 10.1023/A:1007071905824. [DOI] [PubMed] [Google Scholar]
  • 14.Dum N. Age-dependent changes of the compound action potential in the guinea pig. Arch. Otorhinolaryngol. 1983;238:179–187. doi: 10.1007/BF00454311. [DOI] [PubMed] [Google Scholar]
  • 15.Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S. Alpha9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705–715. doi: 10.1016/0092-8674(94)90555-x. [DOI] [PubMed] [Google Scholar]
  • 16.Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J. Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. U.S.A. 2001;98:3501–3506. doi: 10.1073/pnas.051622798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev. 1993;73:309–373. doi: 10.1152/physrev.1993.73.2.309. [DOI] [PubMed] [Google Scholar]
  • 18.Fechter LD, Clerici WJ, Yao L, Hoeffding V. Rapid disruption of cochlear function and structure by trimethyltin in the guinea pig. Hear. Res. 1992;58:166–174. doi: 10.1016/0378-5955(92)90125-7. [DOI] [PubMed] [Google Scholar]
  • 19.Felix D, Ehrenberger K. The efferent modulation of mammalian inner hair cell afferents. Hear. Res. 1992;64:1–5. doi: 10.1016/0378-5955(92)90163-H. [DOI] [PubMed] [Google Scholar]
  • 20.Finlayson PG, Caspary DM. Synaptic potentials of chinchilla lateral superior olivary neurons. Hear. Res. 1989;38:221–228. doi: 10.1016/0378-5955(89)90067-1. [DOI] [PubMed] [Google Scholar]
  • 21.Gardi JN, Bledsoe Jr SC. The use of kainic acid for studying the origins of scalp-recorded auditory brainstem responses in the guinea pig. Neurosci. Lett. 1981;26:143–149. doi: 10.1016/0304-3940(81)90340-2. [DOI] [PubMed] [Google Scholar]
  • 22.Gifford ML, Guinan Jr JJ. Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear. Res. 1987;29:179–194. doi: 10.1016/0378-5955(87)90166-3. [DOI] [PubMed] [Google Scholar]
  • 23.Goldstein MHJ, Kiang NYS. Synchrony of neural activity in electric responses evoked by transient acoustic stimuli. J. Acoust. Soc. Am. 1958;30:107–114. [Google Scholar]
  • 24.Gotti C, Moretti M, Maggi R, Longhi R, Hanke W, Klinke N, Clementi F. Alpha7 and alpha8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur. J. Neurosci. 1997;9:1201–1211. doi: 10.1111/j.1460-9568.1997.tb01475.x. [DOI] [PubMed] [Google Scholar]
  • 25.Groff JA, Liberman MC. Brainstem stimulation causes long-lasting enhancement of cochlear neural activity. Assoc. Res. Otolaryngol. Abstr. 2002;25:239. [Google Scholar]
  • 26.Guinan Jr JJ, Norris BE, Guinan SS. Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. Int. J. Neurosci. 1972;4:147–166. [Google Scholar]
  • 27.Kelly JB, Liscum A, van Adel B, Ito M. Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus. Hear. Res. 1998;116:43–54. doi: 10.1016/S0378-5955(97)00195-0. [DOI] [PubMed] [Google Scholar]
  • 28.Kiang NYS, Watanabe T, Thomas EC, Clark LF. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve, Res. Monogr. 35. Cambridge, MA: MIT Press; 1965. [Google Scholar]
  • 29.Kourie JI, Shorthouse AA. Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. Cell Physiol. 2000;278:C1063–1087. doi: 10.1152/ajpcell.2000.278.6.C1063. [DOI] [PubMed] [Google Scholar]
  • 30.Kujawa SG, Liberman MC. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J. Neurophysiol. 1997;78:3095–3106. doi: 10.1152/jn.1997.78.6.3095. [DOI] [PubMed] [Google Scholar]
  • 31.Kujawa SG, Liberman MC. Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. J. Assoc. Res. Otolaryngol. 2001;2:268–278. doi: 10.1007/s101620010047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Le Prell CG, Bledsoe Jr SC, Bobbin RP, Puel JL. Neurotransmission in the inner ear: Functional and molecular analyses. In: Santos–Sacchi J, Jahn AF, editors. Physiology of the Ear, 2nd ed. New York: Singular Publishing; 2001. pp. 575–611. [Google Scholar]
  • 33.Li L, Kelly JB. Binaural responses in rat inferior colliculus following kainic acid lesions of the superior olive: interaural intensity difference functions. Hear. Res. 1992;61:73–85. doi: 10.1016/0378-5955(92)90038-O. [DOI] [PubMed] [Google Scholar]
  • 34.Liberman MC. Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear. Res. 1990;49:209–223. doi: 10.1016/0378-5955(90)90105-X. [DOI] [PubMed] [Google Scholar]
  • 35.Liberman MC. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J. Neurophysiol. 1991;65:123–132. doi: 10.1152/jn.1991.65.1.123. [DOI] [PubMed] [Google Scholar]
  • 36.Liberman MC, Puria S, Guinan Jr JJ. The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1− f2 distortion product otoacoustic emission. J. Acoust Soc. Am. 1996;99:3572–3584. doi: 10.1121/1.414956. [DOI] [PubMed] [Google Scholar]
  • 37.Maison SF, Liberman MC. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Matsubayashi H, Alkondon M, Pereira EF, Swanson KL, Albuquerque EX. Strychnine: a potent competitive antagonist of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 1998;284:904–913. [PubMed] [Google Scholar]
  • 39.Morley BJ, Li HS, Hiel H, Drescher DG, Elgoyhen AB. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Brain Res. Mol. Brain Res. 1998;53:78–87. doi: 10.1016/S0169-328X(97)00272-6. [DOI] [PubMed] [Google Scholar]
  • 40.Mulheran M, Harpur ES. The effect of gentamicin and furosemide given in combination on cochlear potentials in the guinea pig. Br. J. Audiol. 1998;32:47–56. doi: 10.3109/03005364000000050. [DOI] [PubMed] [Google Scholar]
  • 41.Murugasu E, Russell IJ. The role of calcium on the effects of intracochlear acetylcholine perfusion on basilar membrane displacement in the basal turn of the guinea pig cochlea. Aud. Neurosci. 1996;2:363–376. doi: 10.1523/JNEUROSCI.16-01-00325.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press; 1996. [Google Scholar]
  • 43.Oestreicher E, Arnold W, Ehrenberger K, Felix D. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs. Hear. Res. 1997;107:46–52. doi: 10.1016/S0378-5955(97)00023-3. [DOI] [PubMed] [Google Scholar]
  • 44.Osen KK, Roth K. Histochemical localization of cholinesterases in the cochlear nuclei of the cat, with notes on the origin of acetylcholinesterase-positive afferents and the superior olive. Brain Res. 1969;16:165–185. doi: 10.1016/0006-8993(69)90092-4. [DOI] [PubMed] [Google Scholar]
  • 45.Park HJ, Niedzielski AS, Wenthold RJ. Expression of the nicotinic acetylcholine receptor subunit, alpha9, in the guinea pig cochlea. Hear. Res. 1997;112:95–105. doi: 10.1016/S0378-5955(97)00111-1. [DOI] [PubMed] [Google Scholar]
  • 46.Peake WT, Goldstein MHJ, Kiang NYS. Responses of the auditory nerve to repetitive acoustic stimulation. J. Acoust. Soc. Am. 1962;34:562–570. [Google Scholar]
  • 47.Puel JL. Chemical synaptic transmission in the cochlea. Prog. Neurobiol. 1995;47:449–476. doi: 10.1016/0301-0082(95)00028-3. [DOI] [PubMed] [Google Scholar]
  • 48.Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol. (Stockh.) 1993;113:330–334. doi: 10.3109/00016489309135819. [DOI] [PubMed] [Google Scholar]
  • 49.Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J. Neurophysiol. 1988;60:549–568. doi: 10.1152/jn.1988.60.2.549. [DOI] [PubMed] [Google Scholar]
  • 50.Robertson D. Brainstem location of efferent neurones projecting to the guinea pig cochlea. Hear. Res. 1985;20:79–84. doi: 10.1016/0378-5955(85)90060-7. [DOI] [PubMed] [Google Scholar]
  • 51.Robertson D, Anderson CJ, Cole KS. Segregation of efferent projections to different turns of the guinea pig cochlea. Hear. Res. 1987;25:69–76. doi: 10.1016/0378-5955(87)90080-3. [DOI] [PubMed] [Google Scholar]
  • 52.Rooney BJ, Kavanagh GL, Kelly JB. Kainic acid lesions of the superior olivary complex: a horseradish peroxidase study of surviving brain-stem projections. J. Neurosci. Meth. 1991;39:65–75. doi: 10.1016/0165-0270(91)90094-G. [DOI] [PubMed] [Google Scholar]
  • 53.Ruel J, Nouvian R, Gervais d'Aldin C, Pujol R, Eybalin M, Puel JL. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur. J. Neurosci. 2001;14:977–986. doi: 10.1046/j.0953-816x.2001.01721.x. [DOI] [PubMed] [Google Scholar]
  • 54.Sahley TL, Nodar RH. Improvement in auditory function following pentazocine suggests a role for dynorphins in auditory sensitivity. Ear Hear. 1994;15:422–431. doi: 10.1097/00003446-199412000-00003. [DOI] [PubMed] [Google Scholar]
  • 55.Sahley TL, Kalish RB, Musiek FE, Hoffman DW. Effects of opioid be drugs on auditory evoked potentials suggest a role of lateral olivocochlear dynorphins in auditory function. Hear. Res. 1991;55:133–142. doi: 10.1016/0378-5955(91)90099-U. [DOI] [PubMed] [Google Scholar]
  • 56.Sahley TL, Nodar RH, Musiek FE. Blockade of opioid-induced changes in auditory function at the level of the cochlea. Ear Hear. 1996a;17:552–558. doi: 10.1097/00003446-199612000-00011. [DOI] [PubMed] [Google Scholar]
  • 57.Sahley TL, Musiek FE, Nodar RH. Naloxone blockade of (−) pentazocine-induced changes in auditory function. Ear Hear. 1996b;17:341–353. doi: 10.1097/00003446-199608000-00006. [DOI] [PubMed] [Google Scholar]
  • 58.Sally SL, Kelly JB. Effects of superior olivary complex lesions on binaural responses in rat inferior colliculus. Brain Res. 1992;572:5–18. doi: 10.1016/0006-8993(92)90444-E. [DOI] [PubMed] [Google Scholar]
  • 59.Sanes DH, Merickel M, Rubel EW. Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J. Comp. Neurol. 1989;279:436–444. doi: 10.1002/cne.902790308. [DOI] [PubMed] [Google Scholar]
  • 60.Sommer I, Lingenhohl K, Friauf E. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp. Brain Res. 1993;95:223–239. doi: 10.1007/BF00229781. [DOI] [PubMed] [Google Scholar]
  • 61.Spangler KM, Warr WB. Transneuronal changes in cochlear radial afferent fibers following destruction of lateral olivocochlear neurons. Soc. Neurosci. Abstr. 1987;13:1258. [Google Scholar]
  • 62.Sridhar TS, Liberman MC, Brown MC, Sewell WF. A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 1995;15:3667–3678. doi: 10.1523/JNEUROSCI.15-05-03667.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Stopp PE. The distribution of the olivocochlear bundle and its possible role in frequency/intensity coding. In: Hartmann R, Klinke R, editors. Hearing—Physiological Bases and Psychophysics. Berlin: Springer; 1983. pp. 176–179. [Google Scholar]
  • 64.Stopp PE. The problem of obtaining reproducible quantitative data of the olivocochlear pathway as exemplified in the guinea pig. Eur. Arch. Otorhinolaryngol. 1990;247:29–32. doi: 10.1007/BF00240945. [DOI] [PubMed] [Google Scholar]
  • 65.Strutz J, Bielenberg K. Efferent acoustic neurons within the lateral superior olivary nucleus of the guinea pig. Brain Res. 1984;299:174–177. doi: 10.1016/0006-8993(84)90803-5. [DOI] [PubMed] [Google Scholar]
  • 66.Thorne PR, Gavin JB. Changing relationships between structure and function in the cochlea during recovery from intense sound exposure. Ann. Otol. Rhinol. Laryngol. 1985;94:81–86. doi: 10.1177/000348948509400117. [DOI] [PubMed] [Google Scholar]
  • 67.Tsuchitani C. Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol. 1977;40:296–318. doi: 10.1152/jn.1977.40.2.296. [DOI] [PubMed] [Google Scholar]
  • 68.Tsuchitani C, Boudreau JC. Single unit analysis of cat superior olive S segment with tonal stimuli. J. Neurophysiol. 1966;29:684–697. doi: 10.1152/jn.1966.29.4.684. [DOI] [PubMed] [Google Scholar]
  • 69.Ungan P, Yagcioglu S. Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem. Hear. Res. 2002;167:81–101. doi: 10.1016/S0378-5955(02)00351-9. [DOI] [PubMed] [Google Scholar]
  • 70.Wada S, Starr A. Anatomical bases of binaural interaction in auditory brain-stem responses from guinea pig. Electroencephalogr. Clin. Neurophysiol. 1989;72:535–544. doi: 10.1016/0013-4694(89)90231-9. [DOI] [PubMed] [Google Scholar]
  • 71.Warr WB. Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR, editors. Mammalian Auditory Pathway: Neuroanatomy. Boston: Little, Brown; 1992. pp. 410–448. [Google Scholar]
  • 72.Warr WB, Guinan JJ, White JS. Organization of efferent fibers: The lateral and medial olivocochlear systems. In: Altschule RA, Hoffman DW, Bobbin RP, editors. Neurobiology of Hearing: The Cochlea. New York: Raven Press; 1986. pp. 333–348. [Google Scholar]
  • 73.Zaaroor M, Starr A. Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. I. Superior olivary complex. Electroencephalogr. Clin. Neurophysiol. 1991;80:422–435. doi: 10.1016/0168-5597(91)90091-B. [DOI] [PubMed] [Google Scholar]
  • 74.Zheng XY, Henderson D, McFadden SL, Ding DL, Salvi RJ. Auditory nerve fiber responses following chronic cochlear de-efferentation. J. Comp. Neurol. 1999;406:72–86. doi: 10.1002/(SICI)1096-9861(19990329)406:1<72::AID-CNE5>3.3.CO;2-1. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES