Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2003 Jan 15;4(2):235–249. doi: 10.1007/s10162-002-3014-x

Differential Ear Effects of Profound Unilateral Deafness on the Adult Human Central Auditory System

Deepak Khosla 1, Curtis W Ponton 2,4,, Jos J Eggermont 3, Betty Kwong 4, Manuel Dort 4, Juha-Pekka Vasama 5
PMCID: PMC3202721  PMID: 12943375

Abstract

This study investigates the effects of profound acquired unilateral deafness on the adult human central auditory system by analyzing long-latency auditory evoked potentials (AEPs) with dipole source modeling methods. AEPs, elicited by clicks presented to the intact ear in 19 adult subjects with profound unilateral deafness and monaurally to each ear in eight adult normal-hearing controls, were recorded with a 31-channel system. The responses in the 70–210 ms time window, encompassing the N1b/P2 and Ta/Tb components of the AEPs, were modeled by a vertically and a laterally oriented dipole source in each hemisphere. Peak latencies and amplitudes of the major components of the dipole waveforms were measured in the hemispheres ipsilateral and contralateral to the stimulated ear. The normal-hearing subjects showed significant ipsilateral–contralateral latency and amplitude differences, with contralateral source activities that were typically larger and peaked earlier than the ipsilateral activities. In addition, the ipsilateral–contralateral amplitude differences from monaural presentation were similar for left and for right ear stimulation. For unilaterally deaf subjects, the previously reported reduction in ipsilateral–contralateral amplitude differences based on scalp waveforms was also observed in the dipole source waveforms. However, analysis of the source dipole activity demonstrated that the reduced inter-hemispheric amplitude differences were ear dependent. Specifically, these changes were found only in those subjects affected by profound left ear unilateral deafness.

Keywords: Auditory evoked potentials (AEPs), dipoles, unilateral deafness, human, plasticity

Full Text

The Full Text of this article is available as a PDF (315.5 KB).

References

  • 1.Adams JC. Ascending projections to the inferior colliculus. J. Comp. Neurol. 1979;183:519–538. doi: 10.1002/cne.901830305. [DOI] [PubMed] [Google Scholar]
  • 2.Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403:309–312. doi: 10.1038/35002078. [DOI] [PubMed] [Google Scholar]
  • 3.Bess F, Klee T, Culbertson J. Identification, assessment, and management of children with unilateral sensorineural hearing loss. Ear Hear. 1986;7:43–51. doi: 10.1097/00003446-198602000-00008. [DOI] [PubMed] [Google Scholar]
  • 4.Bjorklund RA, Lian A. Interhemispheric transmission time in an auditory two-choice reaction task. Scand. J. Psychol. 1993;34:174–182. doi: 10.1111/j.1467-9450.1993.tb01112.x. [DOI] [PubMed] [Google Scholar]
  • 5.Brosch M, Schreiner CE. Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex. Eur. J. Neurosci. 1999;11:3517–3530. doi: 10.1046/j.1460-9568.1999.00770.x. [DOI] [PubMed] [Google Scholar]
  • 6.Brunso–Bechtold JK, Thompson GC, Masterson RB. HRP study of the organization of auditory afferents ascending to the central nucleus of the inferior colliculus in cat. J. Comp. Neurol. 1981;197:705–722. doi: 10.1002/cne.901970410. [DOI] [PubMed] [Google Scholar]
  • 7.Coleman JR, Clerici WJ. Sources of projections to subdivisions of the inferior colliculus in the rat. J. Comp. Neurol. 1987;262:215–226. doi: 10.1002/cne.902620204. [DOI] [PubMed] [Google Scholar]
  • 8.Cuffin BN, Cohen D. Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 1979;47:132–146. doi: 10.1016/0013-4694(79)90215-3. [DOI] [PubMed] [Google Scholar]
  • 9.Eggermont JJ, Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear. Res. 2000;142:89–101. doi: 10.1016/S0378-5955(00)00024-1. [DOI] [PubMed] [Google Scholar]
  • 10.Fujuki N, Naito Y, Nagamine T, Shiom Y, Hirano S, Honjo I, Shibasaki H. Influence of unilateral deafness on evoked magnetic field. Neuro report. 3129-3133, 1998. [DOI] [PubMed]
  • 11.Gustafson TJ, Hamill TA. Differences in localization ability in cases of right versus left unilateral simulated conductive hearing loss. J. Am. Acad. Audiol. 1995;6:124–128. [PubMed] [Google Scholar]
  • 12.Hartvig JJ, Jensen J, Borre S, Johansen PA. Unilateral sensorineural hearing loss in children and auditory performance with respect to right/left ear differences. Br. J. Audiol. 1989;23:207–213. doi: 10.3109/03005368909076501. [DOI] [PubMed] [Google Scholar]
  • 13.Harrison RV, Nagasawa A, Smith DW, Stanton S, Mount RJ. Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hear. Res. 1991;54:11–19. doi: 10.1016/0378-5955(91)90131-R. [DOI] [PubMed] [Google Scholar]
  • 14.Jacobson GP, Lombardi DM, Gibbens ND, Ahmad BK, Newman CW. The effects of stimulus frequency and recording site on the amplitude and latency of multichannel cortical auditory evoked potential (CAEP) component N1. Ear Hear. 1992;13:300–306. doi: 10.1097/00003446-199210000-00007. [DOI] [PubMed] [Google Scholar]
  • 15.Johnsrude S, Zatorre RJ, Milner BA, Evans AC. (1997) Left-hemisphere specialization for the processing of acoustic transients. Neuro report. 1992;8:1761–1765. doi: 10.1097/00001756-199705060-00038. [DOI] [PubMed] [Google Scholar]
  • 16.King C, Nicol T, McGee T, Kraus N. Thalamic asymmetry is related to acoustic signal complexity. Neurosci. Lett. 1999;267:89–92. doi: 10.1016/S0304-3940(99)00336-5. [DOI] [PubMed] [Google Scholar]
  • 17.Kitzes LM. Some physiological consequences of cochlear destruction in the inferior colliculus of the gerbil. Brain Res. 1984;306:171–178. doi: 10.1016/0006-8993(84)90366-4. [DOI] [PubMed] [Google Scholar]
  • 18.Liègeois–Chauvel C, Musolino A, Chauvel P. Localization of the primary auditory area in man. Brain. 1991;114:139–153. [PubMed] [Google Scholar]
  • 19.Liègeois–Chauvell C, Musolino A, Badier JM, Marquis P, Chauvel P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr. Clin. Neurophysiol. 1994;92:204–214. doi: 10.1016/0168-5597(94)90064-7. [DOI] [PubMed] [Google Scholar]
  • 20.Liègeois–Chauvel C, de Graaf JB, Laguitton V, Chauvel P. Specilaization of left auditory cortex for speech perception in man depends on temporal coding. Cereb. Cortex. 1999;9:484–496. doi: 10.1093/cercor/9.5.484. [DOI] [PubMed] [Google Scholar]
  • 21.Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and localization from spatiotemporal MEG data. IEEE Trans. Biomed. Eng. 1992;39:541–557. doi: 10.1109/10.141192. [DOI] [PubMed] [Google Scholar]
  • 22.Mossop JE, Wilson MJ, Caspary DM, Moore DR. Down-regulation of inhibition following unilateral deafening. Hear. Res. 2000;147:183–187. doi: 10.1016/S0378-5955(00)00054-X. [DOI] [PubMed] [Google Scholar]
  • 23.Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology. 1987;24:375–425. doi: 10.1111/j.1469-8986.1987.tb00311.x. [DOI] [PubMed] [Google Scholar]
  • 24.Nalcaci E, Basar–Eroglu C, Stadler M. Visual evoked potential interhemispheric transfer time in different frequency bands. Clin. Neurophysiol. 1999;110:71–81. doi: 10.1016/S0168-5597(98)00049-5. [DOI] [PubMed] [Google Scholar]
  • 25.Ponton CW, Don M, Waring MD, Eggermont JJ, Masuda A. Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation. Electroencephalogr. Clin. Neurophysiol. 1993;88:478–493. doi: 10.1016/0168-5597(93)90037-P. [DOI] [PubMed] [Google Scholar]
  • 26.Ponton CW, Don M, Eggermont JJ, Waring MD, Masuda A. Maturation of human cortical auditory function: Differences between normal hearing and cochlear implant children. Ear. 1996a;17:430–437. doi: 10.1097/00003446-199610000-00009. [DOI] [PubMed] [Google Scholar]
  • 27.Ponton CW, Don M, Eggermont JJ, Waring MD, Kwong B, Masuda A. Auditory system plasticity in children after long periods of complete deafness. Neur report. 1996b;8:61–65. doi: 10.1097/00001756-199612200-00013. [DOI] [PubMed] [Google Scholar]
  • 28.Ponton CW, Moore JK, Eggermont JJ. Prolonged deafness limits auditory system developmental plasticity: evidence from an evoked potential study in children with cochlear implants. Scand. Audiol. 1999;Suppl. 51:13–22. [PubMed] [Google Scholar]
  • 29.Ponton CW, Eggermont JJ, Don M, Waring MD, Kwong B, Cunningham J, Trautwein P. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiol. Neurotol. 2000;5:167–185. doi: 10.1159/000013878. [DOI] [PubMed] [Google Scholar]
  • 30.Ponton CW, Vasama JP, Tremblay K, Khosla D, Kwong B, Don M. Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear. Res. 2001;154:32–44. doi: 10.1016/S0378-5955(01)00214-3. [DOI] [PubMed] [Google Scholar]
  • 31.Ponton CW, Eggermont JJ, Khosla D, Kwong B, Don M. Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin. Neurophysiol. 2002;113:407–420. doi: 10.1016/S1388-2457(01)00733-7. [DOI] [PubMed] [Google Scholar]
  • 32.Popelár J, Eire JP, Aran JM, Cazals Y. Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hear. Res. 1994;72:125–134. doi: 10.1016/0378-5955(94)90212-7. [DOI] [PubMed] [Google Scholar]
  • 33.Rajan R, Irvine DR, Wise LZ, Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 1993;338:17–49. doi: 10.1002/cne.903380104. [DOI] [PubMed] [Google Scholar]
  • 34.Reale RA, Brugge JF, Chan JC. Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Res. 1987;192:281–290. doi: 10.1016/0165-3806(87)90215-x. [DOI] [PubMed] [Google Scholar]
  • 35.Reser DH, Fishman YI, Arezzo JC, Steinschneider M. Binaural interactions in primary auditory cortex of the awake macaque. Cereb. Cortex. 2000;10:574–584. doi: 10.1093/cercor/10.6.574. [DOI] [PubMed] [Google Scholar]
  • 36.Robertson D, Irvine DR. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 1989;282:456–471. doi: 10.1002/cne.902820311. [DOI] [PubMed] [Google Scholar]
  • 37.Scheffler K, Bilecen N, Tschopp K, Seelig J. Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb. Cortex. 1998;8:156–163. doi: 10.1093/cercor/8.2.156. [DOI] [PubMed] [Google Scholar]
  • 38.Scherg M, Von Cramon D. Two bilateral sources of late AEP as identified by a spatiotemporal dipole model. Electroencephalogr. Clin. Neurophysiol. 1985;62:32–44. doi: 10.1016/0168-5597(85)90033-4. [DOI] [PubMed] [Google Scholar]
  • 39.Scherg M, Von Cramon D. Evoked dipole source potentials of the human auditory cortex. Electroencephalogr. Clin. Neurophysiol. 1986;65:344–360. doi: 10.1016/0168-5597(86)90014-6. [DOI] [PubMed] [Google Scholar]
  • 40.Scherg M. Functional imaging and localization of electromagnetic brain activity. Brain Topogr. 1992;5:103–111. doi: 10.1007/BF01129037. [DOI] [PubMed] [Google Scholar]
  • 41.Snyder AZ. Dipole source localization in the study of EP generators: A critique. Electroencephalogr. Clin. Neurophysiol. 1991;80:321–325. doi: 10.1016/0168-5597(91)90116-F. [DOI] [PubMed] [Google Scholar]
  • 42.Steinschneider M, Volkov IO, Noh MD, Garell PC, Howard MA. Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. J. Neurophysiol. 1999;82:2346–2357. doi: 10.1152/jn.1999.82.5.2346. [DOI] [PubMed] [Google Scholar]
  • 43.Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for hearing: recent progress. Proc. Natl. Acad. Sci. U.S.A. 2000;97:11807–11814. doi: 10.1073/pnas.97.22.11807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Tonnquist–Uhlen I, Ponton CW, Eggermont JJ, Kwong B, Don M. Maturation of human central auditory system activity: The T-complex. Clin. Neurophysiol. (in press). [DOI] [PubMed]
  • 45.Vasama J-P, Mäkelä JP. Auditory pathway plasticity in adult humans after unilateral idiopathic sudden sensorineural hearing loss. Hear. Res. 1995;87:132–140. doi: 10.1016/0378-5955(95)00086-J. [DOI] [PubMed] [Google Scholar]
  • 46.Vasama J-P, Mäkelä JP. Auditory cortical responses in humans with profound unilateral sensorineural hearing loss from early childhood. Hear. Res. 1997;104:183–190. doi: 10.1016/S0378-5955(96)00200-6. [DOI] [PubMed] [Google Scholar]
  • 47.Vasama J-P, Mäkelä JP, Pyykkö I, Hari R. Abrupt unilateral deafness modifies function of human central auditory pathways. Neuro report. 1995;6:961–964. doi: 10.1097/00001756-199505090-00003. [DOI] [PubMed] [Google Scholar]
  • 48.Vasama J-P, Mäkelä JP, Ramsay H. Modification of auditory pathway functions in patients with hearing improvements after middle ear surgery. Otolaryngol. Head Neck Surg. 1998;119:125–130. doi: 10.1016/S0194-5998(98)70183-4. [DOI] [PubMed] [Google Scholar]
  • 49.Verkindt C, Bertrand O, Thevenet M, Pernier J. Two auditory components in the 130–230 ms range disclosed by their stimulus frequency dependence. Neuro report. 1994;5:1189–1192. doi: 10.1097/00001756-199406020-00007. [DOI] [PubMed] [Google Scholar]
  • 50.Zatorre RJ, Evans AC, Meyer E, Gjedde A. Lateralization of phonetic and pitch discrimination in speech processing. Science. 1992;256:846–849. doi: 10.1126/science.1589767. [DOI] [PubMed] [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES