Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Aug;78(8):5009–5013. doi: 10.1073/pnas.78.8.5009

Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo

Dan Röhme 1
PMCID: PMC320321  PMID: 6946449

Abstract

The replicative life spans of mammalian fibroblasts in vitro were studied in a number of cell cultures representing eight species. Emphasis was placed on determining the population doubling level at which phase III (a period of decrease in the rate of proliferation) and chromosomal alterations occur. All the cell cultures studied went through a growth crisis, a period of apparent growth cessation lasting for at least 2 weeks. In most cultures, the crisis represented the end of their replicative capacities, but in some cultures cell proliferation was resumed after the crisis. A predominantly diploid chromosome constitution (more than 75%) was demonstrated prior to the growth crisis. In cultures in which cell proliferation was resumed after the crisis, a nondiploid constitution prevailed in all cases except the rat (with 90% or more diploid cells all the time). The growth crisis occurred at population doubling levels that were characteristic for the species and was shown to be related to the species' maximal life span by a strict power law, being proportional to the square root of the maximal life span. Based on data in the literature, the same relationship was also valid for the lifespans of circulating mammalian erythrocytes in vivo. These results may indicate the prevalence of a common functional basis regulating the life span of fibroblasts and erythrocytes and thus operating in replicative as well as postmitotic cells in vitro and in vivo.

Keywords: cell ageing, replicative potential, cell cultures, phase III, chromosomes

Full text

PDF
5009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Danes B. S. Progeria: a cell culture study on aging. J Clin Invest. 1971 Sep;50(9):2000–2003. doi: 10.1172/JCI106692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goldstein S. Lifespan of cultured cells in progeria. Lancet. 1969 Feb 22;1(7591):424–424. doi: 10.1016/s0140-6736(69)91404-4. [DOI] [PubMed] [Google Scholar]
  3. Goldstein S., Moerman E. J., Soeldner J. S., Gleason R. E., Barnett D. M. Chronologic and physiologic age affect replicative life-span of fibroblasts from diabetic, prediabetic, and normal donors. Science. 1978 Feb 17;199(4330):781–782. doi: 10.1126/science.622567. [DOI] [PubMed] [Google Scholar]
  4. Goldstein S., Singal D. P. Senescence of cultured human fibroblasts: mitotic versus metabolic time. Exp Cell Res. 1974 Oct;88(2):359–364. doi: 10.1016/0014-4827(74)90252-3. [DOI] [PubMed] [Google Scholar]
  5. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  6. Hayflick L. The longevity of cultured human cells. J Am Geriatr Soc. 1974 Jan;22(1):1–12. doi: 10.1111/j.1532-5415.1974.tb02152.x. [DOI] [PubMed] [Google Scholar]
  7. Heneen W. K. HeLa cells and their possible contamination of other cell lines: karyotype studies. Hereditas. 1976 Jun 14;82(2):217–248. doi: 10.1111/j.1601-5223.1976.tb01560.x. [DOI] [PubMed] [Google Scholar]
  8. Holliday R., Huschtscha L. I., Tarrant G. M., Kirkwood T. B. Testing the commitment theory of cellular aging. Science. 1977 Oct 28;198(4315):366–372. doi: 10.1126/science.910134. [DOI] [PubMed] [Google Scholar]
  9. KROOTH R. S., SHAW M. W., CAMPBELL B. K. A PERSISTENT STRAIN OF DIPLOID FIBROBLASTS. J Natl Cancer Inst. 1964 May;32:1031–1040. [PubMed] [Google Scholar]
  10. Kay M. M. Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3521–3525. doi: 10.1073/pnas.72.9.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEVAN A., BIESELE J. J. Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells. Ann N Y Acad Sci. 1958 Sep 30;71(6):1022–1053. doi: 10.1111/j.1749-6632.1958.tb46820.x. [DOI] [PubMed] [Google Scholar]
  12. Macieira-Coelho A., Diatloff C., Malaise E. Effect of low dose rate irradiation on the division potential of cells in vitro. II. Mouse lung fibroblasts. Exp Cell Res. 1976 Jul;100(2):228–232. doi: 10.1016/0014-4827(76)90142-7. [DOI] [PubMed] [Google Scholar]
  13. Martin G. M. Cellular aging--clonal senescence. A review (Part I). Am J Pathol. 1977 Nov;89(2):484–512. [PMC free article] [PubMed] [Google Scholar]
  14. Martin G. M., Sprague C. A., Epstein C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab Invest. 1970 Jul;23(1):86–92. [PubMed] [Google Scholar]
  15. Miller R. C., Nichols W. W., Pottash J., Aronson M. M. In vitro aging. Cytogenetic comparison of diploid human fibroblast and epithelioid cell lines. Exp Cell Res. 1977 Nov;110(1):63–73. doi: 10.1016/0014-4827(77)90270-1. [DOI] [PubMed] [Google Scholar]
  16. Nichols W. W., Murphy D. G., Cristofalo V. J., Toji L. H., Greene A. E., Dwight S. A. Characterization of a new human diploid cell strain, IMR-90. Science. 1977 Apr 1;196(4285):60–63. doi: 10.1126/science.841339. [DOI] [PubMed] [Google Scholar]
  17. Pontén J. Spontaneous and virus induced transformation in cell culture. Virol Monogr. 1971;8:1–253. doi: 10.1007/978-3-7091-8258-1_1. [DOI] [PubMed] [Google Scholar]
  18. Povey S., Gardiner S. E., Watson B., Mowbray S., Harris H., Arthur E., Steel C. M., Blenkinsop C., Evans H. J. Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen. Ann Hum Genet. 1973 Jan;36(3):247–266. doi: 10.1111/j.1469-1809.1973.tb00588.x. [DOI] [PubMed] [Google Scholar]
  19. Pye D., MacGregor A., Stanley J. F. Marsupial cells in long-term culture. In Vitro. 1977 Apr;13(4):232–236. doi: 10.1007/BF02615080. [DOI] [PubMed] [Google Scholar]
  20. ROTHFELS K. H., KUPELWIESER E. B., PARKER R. C. EFFECTS OF X-IRRADIATED FEEDER LAYERS ON MITOTIC ACTIVITY AND DEVELOPMENT OF ANEUPLOIDY IN MOUSE-EMBRYO CELLS IN VITRO. Proc Can Cancer Conf. 1963;5:191–223. [PubMed] [Google Scholar]
  21. Schaeffer W. I. Proposed usage of animal tissue culture terms (revised 1978). Usage of vertebrate cell, tissue and organ culture terminology. In Vitro. 1979 Sep;15(9):649–653. doi: 10.1007/BF02618241. [DOI] [PubMed] [Google Scholar]
  22. Schneider E. L., Braunschweiger K., Mitsui Y. The effect of serum batch on the in vitro lifespans of cell cultures derived from old and young human donors. Exp Cell Res. 1978 Aug;115(1):47–52. doi: 10.1016/0014-4827(78)90400-7. [DOI] [PubMed] [Google Scholar]
  23. Schneider E. L., Mitsui Y., Au K. S., Shorr S. S. Tissue-specific differences in cultured human diploid fibroblasts. Exp Cell Res. 1977 Aug;108(1):1–6. doi: 10.1016/s0014-4827(77)80002-5. [DOI] [PubMed] [Google Scholar]
  24. Schneider E. L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3584–3588. doi: 10.1073/pnas.73.10.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanley J. F., Pye D., MacGregor A. Comparison of doubling numbers attained by cultured animal cells with life span of species. Nature. 1975 May 8;255(5504):158–159. doi: 10.1038/255158a0. [DOI] [PubMed] [Google Scholar]
  26. Storer J. B. Longevity and gross pathology at death in 22 inbred mouse strains. J Gerontol. 1966 Jul;21(3):404–409. doi: 10.1093/geronj/21.3.404. [DOI] [PubMed] [Google Scholar]
  27. Thompson K. V., Holliday R. Effect of temperature on the longevity of human fibroblasts in culture. Exp Cell Res. 1973 Aug;80(2):354–360. doi: 10.1016/0014-4827(73)90307-8. [DOI] [PubMed] [Google Scholar]
  28. Yaffe D. Cellular aspects of muscle differentiation in vitro. Curr Top Dev Biol. 1969;4:37–77. doi: 10.1016/s0070-2153(08)60480-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES