Abstract
A new affinity chromatography system that selectively retains glycosylated amino acids has been utilized to determine the amount of nonenzymatic glycosylation present in peripheral nerve from diabetic and control rats and dogs. The mean value for glycosylated amino acids in diabetic rats was 2.8 times greater than the mean value in normal rats (P less than 0.001). In diabetic dogs, mean values were 2.15 times greater than normal values (P less than 0.05). Amino acid analysis of reduced, glycosylated amino acids previously isolated by affinity chromatography showed that glycosylated lysine and its hydrolysis rearrangement products were the major borohydride-reducible adduct present. In addition, another glycosylated product was noted to be present in major proportions. This radioactive product did not chromatograph with any of the available glycosylated amino acid standards. The finding that diabetes results in a nearly 3-fold increase of peripheral nerve glycosylation is consistent with a number of previous investigations in which glycosylation was measured in hemoglobin, serum albumin, and urinary amino acids and peptides from diabetics and normals. The results reported here provide evidence that increased nonenzymatic glycosylation is occurring in a tissue where physiological, morphological, and clinical degeneration characteristically develop as a result of diabetes mellitus.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brownlee M., Cerami A. The biochemistry of the complications of diabetes mellitus. Annu Rev Biochem. 1981;50:385–432. doi: 10.1146/annurev.bi.50.070181.002125. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Vlassara H., Cerami A. Measurement of glycosylated amino acids and peptides from urine of diabetic patients using affinity chromatography. Diabetes. 1980 Dec;29(12):1044–1047. doi: 10.2337/diab.29.12.1044. [DOI] [PubMed] [Google Scholar]
- Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day J. F., Thorpe S. R., Baynes J. W. Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem. 1979 Feb 10;254(3):595–597. [PubMed] [Google Scholar]
- Koenig R. J., Blobstein S. H., Cerami A. Structure of carbohydrate of hemoglobin AIc. J Biol Chem. 1977 May 10;252(9):2992–2997. [PubMed] [Google Scholar]
- MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
- Miller J. A., Gravallese E., Bunn H. F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J Clin Invest. 1980 Apr;65(4):896–901. doi: 10.1172/JCI109743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tellez-Nagel I., Korthals J. K., Vlassara H. V., Cerami A. An ultrastructural study of chronic sodium cyanate-indiuced neuropathy. J Neuropathol Exp Neurol. 1977 Mar-Apr;36(2):352–363. [PubMed] [Google Scholar]