Abstract
Chelation of divalent cations by 5 mM EDTA and subsequent removal by dialysis from a cytoplasmic HeLa cell extract leads to a complete loss of 5S rRNA transcription without affecting tRNA synthesis. Transcription complexes for 5S RNA can no longer be assembled in such a zinc-depleted extract and this ability can be fully restored only by the re-addition of 5 microM zinc. Reconstitution experiments with isolated protein fractions show that transcription factor A from HeLa-cells requires zinc to exert its specific function. Pre-formation of transcription complexes partially protects the metal ion against removal by chelation even in the presence of 1.8 M KCl. These results indicate that the zinc ions are bound to mammalian transcription factor IIIA which, in a transcription complex, binds very strongly to the 5S RNA gene. Cation depletion with 75 mM EDTA also suppresses tRNA transcription; an effect which is reversible by zinc addition. We conclude that beside for the binding of TF IIIA, zinc is also bound with a different affinity to a transcription component common to 5S and tRNA synthesis, most likely polymerase III itself.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auld D. S., Atsuya I. Yeast RNA polymerase I: a eukaryotic zinc metalloenzyme. Biochem Biophys Res Commun. 1976 Mar 22;69(2):548–554. doi: 10.1016/0006-291x(76)90555-6. [DOI] [PubMed] [Google Scholar]
- Barrett P., Johnson R. M., Sommerville J. Immunological identity of proteins that bind stored 5S RNA in Xenopus oocytes. Exp Cell Res. 1984 Aug;153(2):299–307. doi: 10.1016/0014-4827(84)90602-5. [DOI] [PubMed] [Google Scholar]
- Bieker J. J., Roeder R. G. Physical properties and DNA-binding stoichiometry of a 5 S gene-specific transcription factor. J Biol Chem. 1984 May 25;259(10):6158–6164. [PubMed] [Google Scholar]
- Bogenhagen D. F., Wormington W. M., Brown D. D. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell. 1982 Feb;28(2):413–421. doi: 10.1016/0092-8674(82)90359-2. [DOI] [PubMed] [Google Scholar]
- Brown D. D., Gurdon J. B. Cloned single repeating units of 5S DNA direct accurate transcription of 5S RNA when injected into Xenopus oocytes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2849–2853. doi: 10.1073/pnas.75.6.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
- Falchuk K. H., Ulpino L., Mazus B., Vallee B. L. E. gracilis RNA polymerase I: a zinc metalloenzyme. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1206–1212. doi: 10.1016/0006-291x(77)91646-1. [DOI] [PubMed] [Google Scholar]
- Fazakerley G. V. Zinc Z-DNA. Nucleic Acids Res. 1984 Apr 25;12(8):3643–3648. doi: 10.1093/nar/12.8.3643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruissem W., Kotzerke M., Seifart K. H. Transcription of the cloned genes for ribosomal 5-S RNA in a system reconstituted in vitro from HeLa cells. Eur J Biochem. 1981 Jul;117(2):407–415. doi: 10.1111/j.1432-1033.1981.tb06353.x. [DOI] [PubMed] [Google Scholar]
- Hanas J. S., Bogenhagen D. F., Wu C. W. Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2142–2145. doi: 10.1073/pnas.80.8.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanas J. S., Hazuda D. J., Bogenhagen D. F., Wu F. Y., Wu C. W. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem. 1983 Dec 10;258(23):14120–14125. [PubMed] [Google Scholar]
- Hofstetter H., Kressman A., Birnstiel M. L. A split promoter for a eucaryotic tRNA gene. Cell. 1981 May;24(2):573–585. doi: 10.1016/0092-8674(81)90348-2. [DOI] [PubMed] [Google Scholar]
- Krämer A., Roeder R. G. The use of monoclonal antibodies for the characterization of a 5 S gene-specific transcription factor (IIIA) from Xenopus laevis. J Biol Chem. 1983 Oct 10;258(19):11915–11923. [PubMed] [Google Scholar]
- Lassar A. B., Martin P. L., Roeder R. G. Transcription of class III genes: formation of preinitiation complexes. Science. 1983 Nov 18;222(4625):740–748. doi: 10.1126/science.6356356. [DOI] [PubMed] [Google Scholar]
- Lattke H., Weser U. Yeast RNA-polymerase B: A zinc protein. FEBS Lett. 1976 Jun 15;65(3):288–292. doi: 10.1016/0014-5793(76)80131-7. [DOI] [PubMed] [Google Scholar]
- Lipps H. J., Nordheim A., Lafer E. M., Ammermann D., Stollar B. D., Rich A. Antibodies against Z DNA react with the macronucleus but not the micronucleus of the hypotrichous ciliate stylonychia mytilus. Cell. 1983 Feb;32(2):435–441. doi: 10.1016/0092-8674(83)90463-4. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Wormington W. M., Brown D. D. Related 5S RNA transcription factors in Xenopus oocytes and somatic cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1760–1764. doi: 10.1073/pnas.78.3.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petranyi P., Jendrisak J. J., Burgess R. R. RNA polymerase II from wheat germ contains tightly bound zinc. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1031–1038. doi: 10.1016/0006-291x(77)91621-7. [DOI] [PubMed] [Google Scholar]
- Pope L. M., Reich K. A., Graham D. R., Sigman D. S. Products of DNA cleavage by the 1,10-phenanthroline-copper complex. Inhibitors of Escherichia coli DNA polymerase I. J Biol Chem. 1982 Oct 25;257(20):12121–12128. [PubMed] [Google Scholar]
- Reynolds W. F., Gottesfeld J. M. 5S rRNA gene transcription factor IIIA alters the helical configuration of DNA. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1862–1866. doi: 10.1073/pnas.80.7.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segall J., Matsui T., Roeder R. G. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem. 1980 Dec 25;255(24):11986–11991. [PubMed] [Google Scholar]
- Shastry B. S., Ng S. Y., Roeder R. G. Multiple factors involved in the transcription of class III genes in Xenopus laevis. J Biol Chem. 1982 Nov 10;257(21):12979–12986. [PubMed] [Google Scholar]
- Shi X. P., Wingender E., Böttrich J., Seifart K. H. Faithful transcription of ribosomal 5-S RNA in vitro depends on the presence of several factors. Eur J Biochem. 1983 Mar 1;131(1):189–194. doi: 10.1111/j.1432-1033.1983.tb07248.x. [DOI] [PubMed] [Google Scholar]
- Sigman D. S., Graham D. R., D'Aurora V., Stern A. M. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Dec 25;254(24):12269–12272. [PubMed] [Google Scholar]
- Smith D. R., Jackson I. J., Brown D. D. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell. 1984 Jun;37(2):645–652. doi: 10.1016/0092-8674(84)90396-9. [DOI] [PubMed] [Google Scholar]
- Vijay-Kumar S., Sakore T. D., Sobell H. M. A crystalline end product produced by the hydrolytic cleavage of an RNA-like fragment by an organometallointercalator: 1,10-phenanthroline-platinum(II)-ethylenediamine-cytidine 3' monophosphate. Nucleic Acids Res. 1984 Apr 25;12(8):3649–3657. doi: 10.1093/nar/12.8.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wandzilak T. M., Benson R. W. Saccharomyces cerevisiae DNA-dependent RNA polymerase III: a zinc metalloenzyme. Biochemistry. 1978 Feb 7;17(3):426–431. doi: 10.1021/bi00596a007. [DOI] [PubMed] [Google Scholar]
- Wandzilak T. M., Benson R. W. Yeast RNA polymerase III: a zinc metalloenzyme. Biochem Biophys Res Commun. 1976 May 23;76(2):247–252. doi: 10.1016/0006-291x(77)90718-5. [DOI] [PubMed] [Google Scholar]
- Wingender E., Shi X. P., Houpert A., Seifart K. H. Isolation of a transcription complex for ribosomal 5S RNA. EMBO J. 1984 Aug;3(8):1761–1768. doi: 10.1002/j.1460-2075.1984.tb02043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]