Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1982 Apr 10;10(7):2419–2437. doi: 10.1093/nar/10.7.2419

Carbodiimide modification analysis of aminoacylated yeast phenylalanine tRNA: evidence for change in the apex region.

D C Fritzinger, M J Fournier
PMCID: PMC320620  PMID: 7045810

Abstract

The G- and U-specific reagent, carbodiimide was used to probe the solution structure of aminoacylated yeast phenylalanine tRNA. Both quantitative and qualitative changes in modification were observed when the modification patterns of tRNA-CCA(3'OH), tRNA-CCA(3'NH2) and phe-tRNA-CCA(3'NH2) were compared. Five nucleotides were modified in all cases, D16 and G20 in the D-loop, U33 and Gm34 in the anticodon loop and U47, in the region of the extra arm. Small changes occurred in the D-loop with incorporation of the adenosine analogue manifest as new, low levels of modification of G22 (D-stem) and a loss of sensitivity to Mg+2 in modification of D16. Aminoacylation resulted in new modification of G19, modification of a residue in the T psi CG sequence, and a 2.5-fold increase in modification of G22. Taken together the results show that aminoacylation causes increased exposure of bases in the apex region of the L-shaped molecule where the D- and psi-loops are joined. The effects observed could occur as a consequence of stable or dynamic changes in conformation.

Full text

PDF
2419

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Fasman G. D. Circular dichroism of valine and formylmethionine transfer RNA from Escherichia coli: effect of aminoacylation. Biochim Biophys Acta. 1970 Mar 19;204(1):183–190. doi: 10.1016/0005-2787(70)90501-0. [DOI] [PubMed] [Google Scholar]
  2. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  3. Bernardi A., Cantoni G. L. Action of spleen exonuclease on transfer ribonucleic acid. J Biol Chem. 1969 Mar 25;244(6):1468–1476. [PubMed] [Google Scholar]
  4. Caron M., Brisson N., Dugas H. Evidence for a conformational change in tRNAPhe upon aminoacylation. J Biol Chem. 1976 Mar 10;251(5):1529–1530. [PubMed] [Google Scholar]
  5. Carre D. S., Litvak S., Chapeville F. Purification and properties of Escherichia coli CTP (ATP)-tRNA nucleotidyltransferase. Biochim Biophys Acta. 1970 Dec 14;224(2):371–381. doi: 10.1016/0005-2787(70)90570-8. [DOI] [PubMed] [Google Scholar]
  6. Chatterjee S. K., Kaji H. Conformational changes of transfer RNA on aminoacylations. Biochim Biophys Acta. 1970 Nov 12;224(1):88–98. doi: 10.1016/0005-2787(70)90623-4. [DOI] [PubMed] [Google Scholar]
  7. Chin R. C., Kidson C. Selective associations of hormonal steroids with aminoacyl transfer RNAs and control of protein synthesis. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2448–2452. doi: 10.1073/pnas.68.10.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohn M., Danchin A., Grunberg-Manago M. Proton magnetic relaxation studies of marganous complexes of transfer RNA and related compounds. J Mol Biol. 1969 Jan 14;39(1):199–217. doi: 10.1016/0022-2836(69)90342-8. [DOI] [PubMed] [Google Scholar]
  9. Danchin A., Grunberg-Manago M. Differences in binding of oligo C to charged and uncharged tRNA. FEBS Lett. 1970 Sep 7;9(6):327–330. doi: 10.1016/0014-5793(70)80391-x. [DOI] [PubMed] [Google Scholar]
  10. Davanloo P., Sprinzl M., Cramer F. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Biochemistry. 1979 Jul 24;18(15):3189–3199. doi: 10.1021/bi00582a001. [DOI] [PubMed] [Google Scholar]
  11. Dvorak D. J., Kidson C. Aminoacyl-tRNA conformation. Information from steroid and oligonucleotide probes. J Biol Chem. 1976 Nov 10;251(21):6730–6734. [PubMed] [Google Scholar]
  12. Englander J. J., Kallenbach N. R., Englander S. W. Hydrogen exchange study of some polynucleotides and transfer RNA. J Mol Biol. 1972 Jan 14;63(1):153–169. doi: 10.1016/0022-2836(72)90527-x. [DOI] [PubMed] [Google Scholar]
  13. Fraser T. H., Rich A. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2671–2675. doi: 10.1073/pnas.70.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fraser T. H., Rich A. The preparation of tRNA terminating in 3'-amino-3'-deoxyadenosine and 2'-amino-2'-deoxyadenosine. Methods Enzymol. 1979;59:134–145. doi: 10.1016/0076-6879(79)59075-2. [DOI] [PubMed] [Google Scholar]
  15. Gantt R. R., Englander S. W., Simpson M. V. Hydrogen-exchange measurements on Escherichia coli transfer ribonucleic acid before, after, and during its aminoacylation. Biochemistry. 1969 Feb;8(2):475–482. doi: 10.1021/bi00830a003. [DOI] [PubMed] [Google Scholar]
  16. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  17. Hashizume H., Imahori K. Circular dichroism and conformation of natural and synthetic polynucleotides. J Biochem. 1967 Jun;61(6):738–749. doi: 10.1093/oxfordjournals.jbchem.a128608. [DOI] [PubMed] [Google Scholar]
  18. Hänggi U. J., Zachau H. G. Partial nuclease digestion of transfer ribonucleic acids and aminoacylated transfer ribonucleic acids. Eur J Biochem. 1971 Feb;18(4):496–502. doi: 10.1111/j.1432-1033.1971.tb01269.x. [DOI] [PubMed] [Google Scholar]
  19. Kirillov S. V., Odinzov V. B. The interconversion of conformers of phenylalanyl-tRNA with different affinity to 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1978 May;5(5):1501–1514. doi: 10.1093/nar/5.5.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindberg B., Klenow H., Hansen K. Some properties of partially purified mammalian adenosine kinase. J Biol Chem. 1967 Feb 10;242(3):350–356. [PubMed] [Google Scholar]
  21. Lowdon M., Goddard J. P. Chemical modification as a probe of conformational changes in transfer ribonucleic acid on aminoacylation. Biochem J. 1978 Jun 1;171(3):601–606. doi: 10.1042/bj1710601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGann R. G., Deutscher M. P. Purification and characterization of a mutant tRNA nucleotidyltransferase. Eur J Biochem. 1980 May;106(1):321–328. doi: 10.1111/j.1432-1033.1980.tb06026.x. [DOI] [PubMed] [Google Scholar]
  23. Melcher G., Paulin D., Guschlbauer W. Circular dichroism of transfer ribonucleic acid. Biochimie. 1971;53(1):43–46. doi: 10.1016/s0300-9084(71)80080-9. [DOI] [PubMed] [Google Scholar]
  24. Negishi K., Nishimura S., Harada F., Hayatsu H. Chemical modification study of aminoacyl-tRNA conformation. Nucleic Acids Res. 1979 Mar;6(3):899–914. doi: 10.1093/nar/6.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ninio J., Luzzati V., Yaniv M. Comparative small-angle x-ray scattering studies on unacylated, acylated and cross-linked Escherichia coli transfer RNA I Val . J Mol Biol. 1972 Nov 14;71(2):217–229. doi: 10.1016/0022-2836(72)90347-6. [DOI] [PubMed] [Google Scholar]
  26. Ohashi Z., Maeda M., McCloskey J. A., Nishimura S. 3-(3-Amino-3-carboxypropyl)uridine: a novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid. Biochemistry. 1974 Jun 4;13(12):2620–2625. doi: 10.1021/bi00709a023. [DOI] [PubMed] [Google Scholar]
  27. Pace B., Matthews E. A., Johnson K. D., Cantor C. R., Pace N. R. Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc Natl Acad Sci U S A. 1982 Jan;79(1):36–40. doi: 10.1073/pnas.79.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Philipps G. R. Binding of transfer ribonucleic acid to ribosomes. Comparison of the nonenzymatic binding of aminoacylated and deacylated transfer ribonucleic acid. J Biol Chem. 1970 Feb 25;245(4):859–868. [PubMed] [Google Scholar]
  29. Pongs O., Wrede P., Erdmann V. A. Binding of complementary oligonucleotides to amino-acylated tRNAPhe from yeast. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1025–1033. doi: 10.1016/0006-291x(76)90757-9. [DOI] [PubMed] [Google Scholar]
  30. Potts R. O., Ford N. C., Jr, Fournier M. J. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding. Biochemistry. 1981 Mar 17;20(6):1653–1659. doi: 10.1021/bi00509a038. [DOI] [PubMed] [Google Scholar]
  31. Rhodes D. Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J Mol Biol. 1975 May 25;94(3):449–460. doi: 10.1016/0022-2836(75)90214-4. [DOI] [PubMed] [Google Scholar]
  32. Rhodes D. Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium. Eur J Biochem. 1977 Nov 15;81(1):91–101. doi: 10.1111/j.1432-1033.1977.tb11930.x. [DOI] [PubMed] [Google Scholar]
  33. Sarin P. S., Zamecnik P. C. Conformational differences between s-RNA and aminoacyl s-RNA. Biochem Biophys Res Commun. 1965 Aug 16;20(4):400–405. doi: 10.1016/0006-291x(65)90590-5. [DOI] [PubMed] [Google Scholar]
  34. Schmidt J., Wang R., Stanfield S., Reid B. R. Yeast phenylalanyl transfer ribonucleic acid synthetase. Purification, molecular weight, and subunit structure. Biochemistry. 1971 Aug 17;10(17):3264–3268. doi: 10.1021/bi00793a016. [DOI] [PubMed] [Google Scholar]
  35. Schofield P. Isolation and some properties of methionine transfer ribonucleic acid from Escherichia coli. Biochemistry. 1970 Apr 14;9(8):1694–1700. doi: 10.1021/bi00810a007. [DOI] [PubMed] [Google Scholar]
  36. Sprinzl M., Siboska G. E., Pedersen J. A. Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli. Nucleic Acids Res. 1978 Mar;5(3):861–877. doi: 10.1093/nar/5.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stern R., Zutra L. E., Littauer U. Z. Fractionation of transfer ribonucleic acid on a methylated albumin-silicic acid column. II. Changes in elution profiles following modification of transfer ribonucleic acid. Biochemistry. 1969 Jan;8(1):313–322. doi: 10.1021/bi00829a044. [DOI] [PubMed] [Google Scholar]
  38. Thomas G. J., Jr, Chen M. C., Lord R. C., Kotsiopoulos P. S., Tritton T. R., Mohr S. C. Transfer RNA: change of conformation upon aminoacylation determined by Raman spectroscopy. Biochem Biophys Res Commun. 1973 Sep 18;54(2):570–577. doi: 10.1016/0006-291x(73)91461-7. [DOI] [PubMed] [Google Scholar]
  39. Tritton T. R., Mohr S. C. Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure. Biochemistry. 1973 Feb 27;12(5):905–914. doi: 10.1021/bi00729a018. [DOI] [PubMed] [Google Scholar]
  40. Watanabe K., Imahori K. The conformation difference between tRNA Met f and formylmethionyl-tRNA Met f from E. coli. Biochem Biophys Res Commun. 1971 Oct 15;45(2):488–494. doi: 10.1016/0006-291x(71)90845-x. [DOI] [PubMed] [Google Scholar]
  41. Wickstrom E. Circular dichroism during deacylation of methionyl-tRNA met -f and formylmethionyl-tRNA met -f from E. coli. Biochem Biophys Res Commun. 1971 Jun 4;43(5):976–983. doi: 10.1016/0006-291x(71)90558-4. [DOI] [PubMed] [Google Scholar]
  42. Woese C., Sogin M., Stahl D., Lewis B. J., Bonen L. A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J Mol Evol. 1976 Apr 9;7(3):197–213. doi: 10.1007/BF01731489. [DOI] [PubMed] [Google Scholar]
  43. Wong Y. P., Reid B. R., Kearns D. R. Conformation of charged and uncharged tRNA. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2193–2195. doi: 10.1073/pnas.70.8.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES